TIDUFD2 May   2025

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Terminology
    2. 1.2 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 Input Capacitors Selection
      2. 2.2.2 DC Side
      3. 2.2.3 AC Side
    3. 2.3 Highlighted Products
      1. 2.3.1 TMDSCNCD28P55X - controlCARD Evaluation Module
        1. 2.3.1.1 Hardware Features
        2. 2.3.1.2 Software Features
      2. 2.3.2 LMG2100R026 - 100V, 53A GaN Half-Bridge Power Stage
      3. 2.3.3 LMG365xR035 - 650V 35mΩ GaN FET With Integrated Driver and Protection
      4. 2.3.4 TMCS1123 - Precision 250kHz Hall-Effect Current Sensor With Reinforced Isolation
      5. 2.3.5 TMCS1133 - Precision 1MHz Hall-Effect Current Sensor With Reinforced Isolation
      6. 2.3.6 INA185 - 26V, 350kHz, Bidirectional, High-Precision Current Sense Amplifier
      7. 2.3.7 LM5164 – 100V Input, 1A Synchronous Buck DC-DC Converter With Ultra-Low IQ
      8. 2.3.8 ISO6762 – General-Purpose Six-Channel Reinforced Digital Isolators With Robust EMC
  9. 3System Design Theory
    1. 3.1 Isolation for Solar Inverters
    2. 3.2 Topology Overview
    3. 3.3 Control Theory
      1. 3.3.1 Single and Extended Phase Shift Modulation Technique
      2. 3.3.2 Zero Voltage Switching and Circulating Current
      3. 3.3.3 Optimized Control Method
      4. 3.3.4 Dead-Time Compensation
      5. 3.3.5 Frequency Modulation
      6. 3.3.6 Controller Block Diagram
    4. 3.4 MPPT and Input Voltage Ripple
  10. 4Hardware, Testing Requirements, and Test Results
    1. 4.1 Hardware Requirements
    2. 4.2 Test Setup
      1. 4.2.1 Board Check
      2. 4.2.2 DC-DC Tests
      3. 4.2.3 DC-AC Tests
    3. 4.3 Test Results
  11. 5Design and Documentation Support
    1. 5.1 Design Files
      1. 5.1.1 Schematics
      2. 5.1.2 BOM
    2. 5.2 Tools and Software
    3. 5.3 Documentation Support
    4. 5.4 Support Resources
    5. 5.5 Trademarks
  12. 6About the Author

Isolation for Solar Inverters

PV micro inverters require an isolation between PV panels and the AC grid because of a variety of reasons, such as the following:

  • Electrical safety
  • Mitigation of common-mode currents flowing between the panels and the grid
  • High input-to-output voltage ratio

From a safety point of view, micro inverters combined with PV panels are commonly installed by the end-user, thus reinforced isolation between the panel and grid side is required to mitigate the electrical shock hazard from AC grid side.

The common-mode currents are a well-known challenge in PV applications due to PV surfaces exposed over grounded roofs or other surfaces in the proximity. This enormous quantity of surface leads to high parasitic capacitance between the panels and the ground (up to 200nF/kW). This parasitic capacitance can cause high common-mode current flowing into the system when common-mode voltage of the converters is not mitigated enough. A common strategy to significantly reduce the parasitic currents flowing in the system is using an isolation stage between the panels and the grid.

TIDA-010954 PV Panel Parasitic CapacitanceFigure 3-1 PV Panel Parasitic Capacitance
TIDA-010954 Blocking Common-Mode
                    Noise Figure 3-2 Blocking Common-Mode Noise