Product details

We are not able to display this information. Please refer to the product data sheet .
WSON (DNT) 12 16 mm² 4 x 4
  • EMI-Resistant Architecture
  • Maximum Output Rates (one active channel):
    • 13.3 ksps (FDC2112, FDC2114)
    • 4.08 ksps (FDC2212, FDC2214)
  • Maximum Input Capacitance: 250 nF (at 10 kHz
    with 1 mH inductor)
  • Sensor Excitation Frequency: 10 kHz to 10 MHz
  • Number of channels: 2, 4
  • Resolution: up to 28 bits
  • System Noise Floor: 0.3 fF at 100 sps
  • Supply Voltage: 2.7 V to 3.6 V
  • Power Consumption: Active: 2.1 mA
  • Low-Power Sleep Mode: 35 µA
  • Shutdown: 200 nA
  • Interface: I2C
  • Temperature range: –40°C to +125°C
  • EMI-Resistant Architecture
  • Maximum Output Rates (one active channel):
    • 13.3 ksps (FDC2112, FDC2114)
    • 4.08 ksps (FDC2212, FDC2214)
  • Maximum Input Capacitance: 250 nF (at 10 kHz
    with 1 mH inductor)
  • Sensor Excitation Frequency: 10 kHz to 10 MHz
  • Number of channels: 2, 4
  • Resolution: up to 28 bits
  • System Noise Floor: 0.3 fF at 100 sps
  • Supply Voltage: 2.7 V to 3.6 V
  • Power Consumption: Active: 2.1 mA
  • Low-Power Sleep Mode: 35 µA
  • Shutdown: 200 nA
  • Interface: I2C
  • Temperature range: –40°C to +125°C

Capacitive sensing is a low-power, low-cost, high-resolution contactless sensing technique that can be applied to a variety of applications ranging from proximity detection and gesture recognition to remote liquid level sensing. The sensor in a capacitive sensing system is any metal or conductor, allowing for low cost and highly flexible system design.

The main challenge limiting sensitivity in capacitive sensing applications is noise susceptibility of the sensors. With the FDC2x1x innovative EMI resistant architecture, performance can be maintained even in presence of high-noise environments.

The FDC2x1x is a multi-channel family of noise- and EMI-resistant, high-resolution, high-speed capacitance-to-digital converters for implementing capacitive sensing solutions. The devices employ an innovative narrow-band based architecture to offer high rejection of noise and interferers while providing high resolution at high speed. The devices support a wide excitation frequency range, offering flexibility in system design. A wide frequency range is especially useful for reliable sensing of conductive liquids such as detergent, soap, and ink.

The FDC221x is optimized for high resolution, up to 28 bits, while the FDC211x offers fast sample rate, up to 13.3ksps, for easy implementation of applications that use fast moving targets. The very large maximum input capacitance of 250 nF allows for the use of remote sensors, as well as for tracking environmental changes over time, temperature and humidity.

The FDC2x1x family targets proximity sensing and liquid level sensing applications for any type of liquids. For non-conductive liquid level sensing applications in the presence of interferences such as human hands, the FDC1004 is recommended, which has integrated active shield drivers.

Capacitive sensing is a low-power, low-cost, high-resolution contactless sensing technique that can be applied to a variety of applications ranging from proximity detection and gesture recognition to remote liquid level sensing. The sensor in a capacitive sensing system is any metal or conductor, allowing for low cost and highly flexible system design.

The main challenge limiting sensitivity in capacitive sensing applications is noise susceptibility of the sensors. With the FDC2x1x innovative EMI resistant architecture, performance can be maintained even in presence of high-noise environments.

The FDC2x1x is a multi-channel family of noise- and EMI-resistant, high-resolution, high-speed capacitance-to-digital converters for implementing capacitive sensing solutions. The devices employ an innovative narrow-band based architecture to offer high rejection of noise and interferers while providing high resolution at high speed. The devices support a wide excitation frequency range, offering flexibility in system design. A wide frequency range is especially useful for reliable sensing of conductive liquids such as detergent, soap, and ink.

The FDC221x is optimized for high resolution, up to 28 bits, while the FDC211x offers fast sample rate, up to 13.3ksps, for easy implementation of applications that use fast moving targets. The very large maximum input capacitance of 250 nF allows for the use of remote sensors, as well as for tracking environmental changes over time, temperature and humidity.

The FDC2x1x family targets proximity sensing and liquid level sensing applications for any type of liquids. For non-conductive liquid level sensing applications in the presence of interferences such as human hands, the FDC1004 is recommended, which has integrated active shield drivers.

Download

Similar products you might be interested in

Similar functionality to the compared device.
FDC1004 ACTIVE 4-Ch, 16-bit, capacitance to digital converter with active shield driver This device is a 4-channel, high resolution FDC with integrated active shield drivers

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

FDC2214EVM — FDC2214 with Two Capacitive Sensors Evaluation Module

The FDC2214 evaluation module demonstrates capacitive sensing technology to detect the presence of a conductive or non-conductive target. The evaluation module includes two PCB capacitive sensors that connect to two of the four channels of the FDC2214. An MSP430 microcontroller is used to interface (...)

In stock
Limit: 5
Simulation model

FDC2212 IBIS MODEL

SLAM264.ZIP (26 KB) - IBIS Model
Reference designs

TIDA-01364 — Smart Backlight Control by White LED Driver, Ambient Light, and Proximity Sensor Reference Design

This reference design conserves power and extends LCD backlight life by dynamically adjusting the LCD backlight brightness relative to the environment's ambient light levels. A capacitive proximity sensor saves power and increases LCD backlight life by waking up the system from sleep or standby (...)
Reference designs

TIDA-00754 — Smart lighting & backlight control by ambient light & noise-immune proximity sensor reference design

This reference design demonstrates a proximity sensor implementation for HMI applications. The design can be used for backlight control that dynamically adjusts LCD backlight brightness relative to environment ambient light levels. A capacitive proximity sensor saves power and increases LCD (...)
Reference designs

TIDA-00466 — Noise-immune Capacitive Proximity Sensor System Reference Design

The FDC2214 proximity and capacitive sensing design demonstrates the use of TI's capacitive sensing technology to sense and detect the presence of various objects. The design is a complete hardware and firmware solution. The firmware  processes the data from one proximity sensor and two (...)
Package Pins Download
WSON (DNT) 12 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos