TPS63061

ACTIVE

2.5V to 12V input voltage, 93% Efficient, 2.25A Switch Current Limit, Buck-Boost Converter

Product details

Topology Buck-Boost Vin (Min) (V) 2.5 Vin (Max) (V) 12 Vout (Max) (V) 8 Vout (Min) (V) 2.5 Duty cycle (Max) (%) 100 Features Enable, Frequency Synchronization, Light Load Efficiency, Load Disconnect, Power Good, Synchronous Rectification, UVLO Fixed Switch current limit (Typ) (A) 2.25 Switching frequency (Min) (kHz) 2200 Switching frequency (Max) (kHz) 2600 Iq (Typ) (mA) 0.03 Iout (Max) (A) 1.3 Rating Catalog
Topology Buck-Boost Vin (Min) (V) 2.5 Vin (Max) (V) 12 Vout (Max) (V) 8 Vout (Min) (V) 2.5 Duty cycle (Max) (%) 100 Features Enable, Frequency Synchronization, Light Load Efficiency, Load Disconnect, Power Good, Synchronous Rectification, UVLO Fixed Switch current limit (Typ) (A) 2.25 Switching frequency (Min) (kHz) 2200 Switching frequency (Max) (kHz) 2600 Iq (Typ) (mA) 0.03 Iout (Max) (A) 1.3 Rating Catalog
WSON (DSC) 10 9 mm² 3 x 3
  • Input voltage range: 2.5 V to 12 V
  • Efficiency: Up to 93%
  • Output current at 5 V (VIN < 10 V): 2 A in buck mode
  • Output current at 5 V (VIN > 4 V): 1.3 A in boost mode
  • Automatic transition between step down and boost mode
  • Typical device quiescent current: < 30 µA
  • Fixed and adjustable output voltage options from 2.5 V to 8 V
  • Power save mode for improved efficiency at low output power
  • Forced fixed-frequency operation at 2.4 MHz and synchronization possible
  • Power good output
  • Buck-Boost Overlap Control™
  • Load disconnect during shutdown
  • Overtemperature protection
  • Overvoltage protection
  • Input voltage range: 2.5 V to 12 V
  • Efficiency: Up to 93%
  • Output current at 5 V (VIN < 10 V): 2 A in buck mode
  • Output current at 5 V (VIN > 4 V): 1.3 A in boost mode
  • Automatic transition between step down and boost mode
  • Typical device quiescent current: < 30 µA
  • Fixed and adjustable output voltage options from 2.5 V to 8 V
  • Power save mode for improved efficiency at low output power
  • Forced fixed-frequency operation at 2.4 MHz and synchronization possible
  • Power good output
  • Buck-Boost Overlap Control™
  • Load disconnect during shutdown
  • Overtemperature protection
  • Overvoltage protection

The TPS6306x devices provide a power supply solution for products powered by either three-cell up to six-cell alkaline, NiCd or NiMH battery, or a one-cell or dual-cell Li-Ion or Li-polymer battery. Output currents can go as high as 2 A while using a dual-cell Li-Ion or Li-polymer battery, and discharge to 5 V or lower. The buck-boost converter is based on a fixed frequency, pulse width modulation (PWM) controller using synchronous rectification to obtain maximum efficiency. At low load currents, the converter enters power save mode to maintain high efficiency over a wide load current range. The power save mode can be disabled, forcing the converter to operate at a fixed switching frequency. The maximum average current in the switches is limited to a typical value of 2.25 A. The output voltage is programmable using an external resistor divider, or is fixed internally on the chip. The converter can be disabled to minimize battery drain. During shutdown, the load disconnects from the battery.

The devices are available in a 3 mm × 3 mm, 10-pin, WSON (DSC) package.

The TPS6306x devices provide a power supply solution for products powered by either three-cell up to six-cell alkaline, NiCd or NiMH battery, or a one-cell or dual-cell Li-Ion or Li-polymer battery. Output currents can go as high as 2 A while using a dual-cell Li-Ion or Li-polymer battery, and discharge to 5 V or lower. The buck-boost converter is based on a fixed frequency, pulse width modulation (PWM) controller using synchronous rectification to obtain maximum efficiency. At low load currents, the converter enters power save mode to maintain high efficiency over a wide load current range. The power save mode can be disabled, forcing the converter to operate at a fixed switching frequency. The maximum average current in the switches is limited to a typical value of 2.25 A. The output voltage is programmable using an external resistor divider, or is fixed internally on the chip. The converter can be disabled to minimize battery drain. During shutdown, the load disconnects from the battery.

The devices are available in a 3 mm × 3 mm, 10-pin, WSON (DSC) package.

Download

Similar products you might be interested in

open-in-new Compare products
Same functionality with different pin-out to the compared device.
TPS63070 ACTIVE Wide input voltage (2V-16V) buck-boost converter TPS63070 has higher Iout

Technical documentation

star = Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 11
Type Title Date
* Data sheet TPS6306x High Input Voltage, Buck-Boost Converter With 2-A Switch Current datasheet (Rev. C) PDF | HTML 15 Sep 2020
Application note Layer Design for Reducing Radiated EMI of DC to DC Buck-Boost Converters (Rev. A) PDF | HTML 09 Jun 2021
Application note Performing Accurate PFM Mode Efficiency Measurements (Rev. A) 11 Dec 2018
Application note Understanding Undervoltage Lockout in Power Devices (Rev. A) 19 Sep 2018
Application note QFN and SON PCB Attachment (Rev. B) PDF | HTML 24 Aug 2018
Application note Basic Calculations of a 4 Switch Buck-Boost Power Stage (Rev. B) 09 Jul 2018
Selection guide Power Management Guide 2018 (Rev. R) 25 Jun 2018
EVM User's guide TPS63060EVM-619 19 Jan 2012
Application note Choosing an Appropriate Pull-up/Pull-down Resistor for Open Drain Outputs 19 Sep 2011
Analog Design Journal IQ: What it is, what it isn’t, and how to use it 17 Jun 2011
Application note Minimizing Ringing at the Switch Node of a Boost Converter 15 Sep 2006

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Simulation model

TPS63061 Unencrypted PSpice Transient Model Package (Rev. A)

SLVM478A.ZIP (38 KB) - PSpice Model
Simulation model

TPS63061 TINA-TI Transient Reference Design

SLVM580.TSC (156 KB) - TINA-TI Reference Design
Simulation model

TPS63061 TINA-TI Transient Spice Model

SLVM581.ZIP (44 KB) - TINA-TI Spice Model
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Calculation tool

Battery Lifetime Estimator (Rev. A)

SLVC808A.ZIP (1889 KB)
Gerber file

TPS63060EVM-619 Gerber Files

SLVC409.ZIP (378 KB)
Reference designs

PMP8921 — 12V@4A Sync Boost Converter Operating from Single or Dual Li-Ion Batteries Reference Design

This synchronous boost converter efficiently operates from 3.0V - 8.6V (one or two Li-Ion cells) and regulates a 12V@4A output. Efficiency of greater than 97% is achieved when running from two cells.
Package Pins Download
WSON (DSC) 10 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos