TPS63031

ACTIVE

High Efficient Single Inductor Buck-Boost Converter with 1-A Switches

Product details

Topology Buck-Boost Vin (Min) (V) 1.8 Vin (Max) (V) 5.5 Vout (Max) (V) 3.3 Vout (Min) (V) 3.3 Duty cycle (Max) (%) 100 Features Enable, Frequency Synchronization, Light Load Efficiency, Load Disconnect, Synchronous Rectification, UVLO Fixed Switch current limit (Typ) (A) 1 Switching frequency (Min) (kHz) 2200 Switching frequency (Max) (kHz) 2600 Iq (Typ) (mA) 0.025 Iout (Max) (A) 0.4 Rating Catalog
Topology Buck-Boost Vin (Min) (V) 1.8 Vin (Max) (V) 5.5 Vout (Max) (V) 3.3 Vout (Min) (V) 3.3 Duty cycle (Max) (%) 100 Features Enable, Frequency Synchronization, Light Load Efficiency, Load Disconnect, Synchronous Rectification, UVLO Fixed Switch current limit (Typ) (A) 1 Switching frequency (Min) (kHz) 2200 Switching frequency (Max) (kHz) 2600 Iq (Typ) (mA) 0.025 Iout (Max) (A) 0.4 Rating Catalog
WSON (DSK) 10 6 mm² 2.5 x 2.5
  • Input voltage range: 1.8 V to 5.5 V
  • Fixed and adjustable output voltage options from 1.2 V to 5.5 V
  • Up to 96% efficiency
  • 800-mA Output current at 3.3 V in step-down mode (VIN = 3.6 V to 5.5 V)
  • Up to 500-mA output current at 3.3 V in boost mode (VIN > 2.4 V)
  • Automatic transition between step-down and boost mode
  • Device quiescent current less than 50 µA
  • Power-save mode for improved efficiency at low-output power
  • Forced fixed frequency operation and synchronization possible
  • Load disconnect during shutdown
  • Overtemperature protection
  • Available in a small 2.5-mm × 2.5-mm 10-pin VSON package (QFN)
  • Input voltage range: 1.8 V to 5.5 V
  • Fixed and adjustable output voltage options from 1.2 V to 5.5 V
  • Up to 96% efficiency
  • 800-mA Output current at 3.3 V in step-down mode (VIN = 3.6 V to 5.5 V)
  • Up to 500-mA output current at 3.3 V in boost mode (VIN > 2.4 V)
  • Automatic transition between step-down and boost mode
  • Device quiescent current less than 50 µA
  • Power-save mode for improved efficiency at low-output power
  • Forced fixed frequency operation and synchronization possible
  • Load disconnect during shutdown
  • Overtemperature protection
  • Available in a small 2.5-mm × 2.5-mm 10-pin VSON package (QFN)

The TPS6303x devices provide a power supply solution for products powered by either a two-cell or three-cell alkaline, NiCd or NiMH battery, or a one-cell Li-ion or Li-polymer battery. Output currents can go as high as 600 mA while using a single-cell Li-ion or Li-polymer battery, and discharge it down to 2.5 V or lower. The buck-boost converter is based on a fixed-frequency, pulse width modulation (PWM) controller using synchronous rectification to obtain maximum efficiency. At low-load currents, the converter enters power-save mode to maintain high efficiency over a wide load current range. The power-save mode can be disabled, forcing the converter to operate at a fixed switching frequency. The maximum average current in the switches is limited to a typical value of 1000 mA. The output voltage is programmable using an external resistor divider, or is fixed internally on the chip. The converter can be disabled to minimize battery drain. During shutdown, the load is disconnected from the battery.

The TPS6303x devices operate over a free air temperature range of –40°C to 85°C. The devices are packaged in a 10-pin VSON package measuring 2.5-mm × 2.5-mm (DSK).

The TPS6303x devices provide a power supply solution for products powered by either a two-cell or three-cell alkaline, NiCd or NiMH battery, or a one-cell Li-ion or Li-polymer battery. Output currents can go as high as 600 mA while using a single-cell Li-ion or Li-polymer battery, and discharge it down to 2.5 V or lower. The buck-boost converter is based on a fixed-frequency, pulse width modulation (PWM) controller using synchronous rectification to obtain maximum efficiency. At low-load currents, the converter enters power-save mode to maintain high efficiency over a wide load current range. The power-save mode can be disabled, forcing the converter to operate at a fixed switching frequency. The maximum average current in the switches is limited to a typical value of 1000 mA. The output voltage is programmable using an external resistor divider, or is fixed internally on the chip. The converter can be disabled to minimize battery drain. During shutdown, the load is disconnected from the battery.

The TPS6303x devices operate over a free air temperature range of –40°C to 85°C. The devices are packaged in a 10-pin VSON package measuring 2.5-mm × 2.5-mm (DSK).

Download

Similar products you might be interested in

open-in-new Compare products
Same functionality with different pin-out to the compared device.
NEW TPS631000 ACTIVE 1.5-A output current, high-power-density buck-boost converter TPS631000 is a newer version with 8-uA Iq and smaller SOT package

Technical documentation

star = Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 10
Type Title Date
* Data sheet TPS6303x High Efficiency Single Inductor Buck-Boost Converter With 1-A Switches datasheet (Rev. D) PDF | HTML 30 Mar 2020
Application note Layer Design for Reducing Radiated EMI of DC to DC Buck-Boost Converters (Rev. A) PDF | HTML 09 Jun 2021
Application note Performing Accurate PFM Mode Efficiency Measurements (Rev. A) 11 Dec 2018
Application note Understanding Undervoltage Lockout in Power Devices (Rev. A) 19 Sep 2018
Application note QFN and SON PCB Attachment (Rev. B) PDF | HTML 24 Aug 2018
Application note Basic Calculations of a 4 Switch Buck-Boost Power Stage (Rev. B) 09 Jul 2018
Selection guide Power Management Guide 2018 (Rev. R) 25 Jun 2018
White paper Power Management Solutions for Ultra-Low-Power 16-Bit MSP430 MCUs (Rev. D) 28 Mar 2012
Analog Design Journal IQ: What it is, what it isn’t, and how to use it 17 Jun 2011
Application note Minimizing Ringing at the Switch Node of a Boost Converter 15 Sep 2006

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Simulation model

TPS63031 Unencrypted PSpice Transient Model Package (Rev. A)

SLVMBA5A.ZIP (63 KB) - PSpice Model
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Calculation tool

Battery Lifetime Estimator (Rev. A)

SLVC808A.ZIP (1889 KB)
Reference designs

TIDM-AIRQUALITYSENSOR — MSP430FR4133 Microcontroller Air Quality Sensor Reference Design

In this reference design, a simple air quality monitor is created and implemented using the particulate matter 2.5 level. This design uses MSP430FR4133 microcontroller (MCU) and Sharp™ DN7C3CA006 PM2.5 sensor. This ultra-low-power centric design of the MSP430™ MCU coupled with (...)
User guide: PDF
Schematic: PDF
Package Pins Download
SON (DSK) 10 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos