제품 상세 정보

Resolution (Bits) 14 Number of DAC channels 1 Interface type Parallel LVDS Sample/update rate (Msps) 400 Features High Performance Rating Catalog Interpolation 1x Power consumption (typ) (mW) 660 SFDR (dB) 88 Architecture Current Sink Operating temperature range (°C) -40 to 85 Reference type Int
Resolution (Bits) 14 Number of DAC channels 1 Interface type Parallel LVDS Sample/update rate (Msps) 400 Features High Performance Rating Catalog Interpolation 1x Power consumption (typ) (mW) 660 SFDR (dB) 88 Architecture Current Sink Operating temperature range (°C) -40 to 85 Reference type Int
HTQFP (PHP) 48 81 mm² 9 x 9
  • 400MSPS Update Rate
  • LVDS-Compatible Input Interface
  • Spurious-Free Dynamic Range (SFDR) to Nyquist:
    • 69dBc at 70MHz IF, 400MSPS
  • W-CDMA Adjacent Channel Power Ratio (ACPR):
    • 73dBc at 30.72MHz IF, 122.88MSPS
    • 71dBc at 61.44MHz IF, 245.76MSPS
  • Differential Scalable Current Sink Outputs: 2mA to 20mA
  • On-Chip 1.2V Reference
  • Single 3.3V Supply Operation
  • Power Dissipation: 660mW at fCLK = 400MSPS, fOUT = 20MHz
  • Package: 48-Pin HTQFP PowerPad,
    TJA = 28.8°C/W
  • 400MSPS Update Rate
  • LVDS-Compatible Input Interface
  • Spurious-Free Dynamic Range (SFDR) to Nyquist:
    • 69dBc at 70MHz IF, 400MSPS
  • W-CDMA Adjacent Channel Power Ratio (ACPR):
    • 73dBc at 30.72MHz IF, 122.88MSPS
    • 71dBc at 61.44MHz IF, 245.76MSPS
  • Differential Scalable Current Sink Outputs: 2mA to 20mA
  • On-Chip 1.2V Reference
  • Single 3.3V Supply Operation
  • Power Dissipation: 660mW at fCLK = 400MSPS, fOUT = 20MHz
  • Package: 48-Pin HTQFP PowerPad,
    TJA = 28.8°C/W

The DAC5675A is a 14-bit resolution high-speed digital-to-analog converter. The DAC5675A is designed for high-speed digital data transmission in wired and wireless communication systems, high-frequency direct-digital synthesis (DDS), and waveform reconstruction in test and measurement applications. The DAC5675A has excellent spurious-free dynamic range (SFDR) at high intermediate frequencies, which makes the DAC5675A well-suited for multicarrier transmission in TDMA- and CDMA-based cellular base transceiver stations (BTSs).

The DAC5675A operates from a single-supply voltage of 3.3 V. Power dissipation is 660 mW at fCLK = 400 MSPS, fOUT = 70 MHz. The DAC5675A provides a nominal full-scale differential current output of 20mA, supporting both single-ended and differential applications. The output current can be directly fed to the load with no additional external output buffer required. The output is referred to the analog supply voltage AVDD.

The DAC5675A comprises a low-voltage differential signaling (LVDS) interface for high-speed digital data input. LVDS features a low differential voltage swing with a low constant power consumption across frequency, allowing for high-speed data transmission with low noise levels; that is, with low electromagnetic interference (EMI). LVDS is typically implemented in low-voltage digital CMOS processes, making it the ideal technology for high-speed interfacing between the DAC5675A and high-speed low-voltage CMOS ASICs or FPGAs. The DAC5675A current-sink-array architecture supports update rates of up to 400MSPS. On-chip edge-triggered input latches provide for minimum setup and hold times, thereby relaxing interface timing.

The DAC5675A has been specifically designed for a differential transformer-coupled output with a 50 Ω doubly- terminated load. With the 20 mA full-scale output current, both a 4:1 impedance ratio (resulting in an output power of 4 dBm) and 1:1 impedance ratio transformer (–2 dBm) are supported. The last configuration is preferred for optimum performance at high output frequencies and update rates. The outputs are terminated to AVDD and have voltage compliance ranges from AVDD –1 to AVDD + 0.3 V.

An accurate on-chip 1.2-V temperature-compensated bandgap reference and control amplifier allows the user to adjust this output current from 20 mA down to 2 mA. This provides 20-dB gain range control capabilities. Alternatively, an external reference voltage may be applied. The DAC5675A features a SLEEP mode, which reduces the standby power to approximately 18 mW.

The DAC5675A is available in a 48-pin HTQFP thermally-enhanced PowerPad package. This package increases thermal efficiency in a standard size IC package. The device is characterized for operation over the industrial temperature range of –40°C to +85°C.

The DAC5675A is a 14-bit resolution high-speed digital-to-analog converter. The DAC5675A is designed for high-speed digital data transmission in wired and wireless communication systems, high-frequency direct-digital synthesis (DDS), and waveform reconstruction in test and measurement applications. The DAC5675A has excellent spurious-free dynamic range (SFDR) at high intermediate frequencies, which makes the DAC5675A well-suited for multicarrier transmission in TDMA- and CDMA-based cellular base transceiver stations (BTSs).

The DAC5675A operates from a single-supply voltage of 3.3 V. Power dissipation is 660 mW at fCLK = 400 MSPS, fOUT = 70 MHz. The DAC5675A provides a nominal full-scale differential current output of 20mA, supporting both single-ended and differential applications. The output current can be directly fed to the load with no additional external output buffer required. The output is referred to the analog supply voltage AVDD.

The DAC5675A comprises a low-voltage differential signaling (LVDS) interface for high-speed digital data input. LVDS features a low differential voltage swing with a low constant power consumption across frequency, allowing for high-speed data transmission with low noise levels; that is, with low electromagnetic interference (EMI). LVDS is typically implemented in low-voltage digital CMOS processes, making it the ideal technology for high-speed interfacing between the DAC5675A and high-speed low-voltage CMOS ASICs or FPGAs. The DAC5675A current-sink-array architecture supports update rates of up to 400MSPS. On-chip edge-triggered input latches provide for minimum setup and hold times, thereby relaxing interface timing.

The DAC5675A has been specifically designed for a differential transformer-coupled output with a 50 Ω doubly- terminated load. With the 20 mA full-scale output current, both a 4:1 impedance ratio (resulting in an output power of 4 dBm) and 1:1 impedance ratio transformer (–2 dBm) are supported. The last configuration is preferred for optimum performance at high output frequencies and update rates. The outputs are terminated to AVDD and have voltage compliance ranges from AVDD –1 to AVDD + 0.3 V.

An accurate on-chip 1.2-V temperature-compensated bandgap reference and control amplifier allows the user to adjust this output current from 20 mA down to 2 mA. This provides 20-dB gain range control capabilities. Alternatively, an external reference voltage may be applied. The DAC5675A features a SLEEP mode, which reduces the standby power to approximately 18 mW.

The DAC5675A is available in a 48-pin HTQFP thermally-enhanced PowerPad package. This package increases thermal efficiency in a standard size IC package. The device is characterized for operation over the industrial temperature range of –40°C to +85°C.

다운로드 스크립트와 함께 비디오 보기 동영상

기술 문서

star =TI에서 선정한 이 제품의 인기 문서
검색된 결과가 없습니다. 검색어를 지우고 다시 시도하십시오.
모두 보기11
유형 직함 날짜
* Data sheet DAC5675A 14-Bit, 400-MSPS Digital-to-Analog Converter datasheet (Rev. D) PDF | HTML 2016/07/01
Analog Design Journal Q3 2009 Issue Analog Applications Journal 2018/09/24
Application note Design for a Wideband Differential Transimpedance DAC Output (Rev. A) 2016/10/17
Application note Wideband Complementary Current Output DAC Single-Ended Interface (Rev. A) 2015/05/08
Application note High Speed, Digital-to-Analog Converters Basics (Rev. A) 2012/10/23
Analog Design Journal Interfacing op amps to high-speed DACs, Part 1: Current-sinking DACs 2009/07/14
Application note Passive Terminations for Current Output DACs 2008/11/10
Application note CDCE72010 as a Clocking Solution for High-Speed Analog-to-Digital Converters 2008/06/08
Application note Phase Noise Performance and Jitter Cleaning Ability of CDCE72010 2008/06/02
Application note Design for a Wideband Differential Transimpedance DAC Output 2008/04/18
EVM User's guide DAC5675 Evaluation Module User's Guide (Rev. A) 2005/03/30

설계 및 개발

추가 조건 또는 필수 리소스는 사용 가능한 경우 아래 제목을 클릭하여 세부 정보 페이지를 확인하세요.

시뮬레이션 모델

DAC5675A IBIS Model (Rev. A)

SLAM016A.ZIP (4 KB) - IBIS Model
계산 툴

MATCHGAIN-CALC — 광대역 콤퍼레이터 전류 출력 DAC-SE 인터페이스: 게인 및 규정 준수 전압 스윙에 대한 충돌 일치

NOTE: Calculator software is available when downloading the application note.
  • Click on "abstract" to view abstract of document.
  • Open the ZIP file to extract the calculator tool.
  • Open the PDF file to view the application note.

High-speed digital-to-analog converters (DACs) most often use a (...)

시뮬레이션 툴

PSPICE-FOR-TI — TI 설계 및 시뮬레이션 툴용 PSpice®

TI용 PSpice®는 아날로그 회로의 기능을 평가하는 데 사용되는 설계 및 시뮬레이션 환경입니다. 완전한 기능을 갖춘 이 설계 및 시뮬레이션 제품군은 Cadence®의 아날로그 분석 엔진을 사용합니다. 무료로 제공되는 TI용 PSpice에는 아날로그 및 전력 포트폴리오뿐 아니라 아날로그 행동 모델에 이르기까지 업계에서 가장 방대한 모델 라이브러리 중 하나가 포함되어 있습니다.

TI 설계 및 시뮬레이션 환경용 PSpice는 기본 제공 라이브러리를 이용해 복잡한 혼합 신호 설계를 시뮬레이션할 수 있습니다. 레이아웃 및 제작에 (...)
패키지 다운로드
HTQFP (PHP) 48 옵션 보기

주문 및 품질

포함된 정보:
  • RoHS
  • REACH
  • 디바이스 마킹
  • 납 마감/볼 재질
  • MSL 등급/피크 리플로우
  • MTBF/FIT 예측
  • 물질 성분
  • 인증 요약
  • 지속적인 신뢰성 모니터링
포함된 정보:
  • 팹 위치
  • 조립 위치

권장 제품에는 본 TI 제품과 관련된 매개 변수, 평가 모듈 또는 레퍼런스 디자인이 있을 수 있습니다.

지원 및 교육

TI 엔지니어의 기술 지원을 받을 수 있는 TI E2E™ 포럼

콘텐츠는 TI 및 커뮤니티 기고자에 의해 "있는 그대로" 제공되며 TI의 사양으로 간주되지 않습니다. 사용 약관을 참조하십시오.

품질, 패키징, TI에서 주문하는 데 대한 질문이 있다면 TI 지원을 방문하세요. ​​​​​​​​​​​​​​

동영상