OMAP-L137

활성

저전력 C674x 부동 소수점 DSP + Arm9 프로세서 - 최대 456MHz

제품 상세 정보

Arm CPU 1 Arm9 Arm (max) (MHz) 456 Coprocessors C674x DSP CPU 32-bit Display type 1 LCD Protocols Ethernet Ethernet MAC 1-Port 10/100 Hardware accelerators PRUSS Operating system Linux, RTOS Security Device identity, Memory protection Rating Catalog Power supply solution TPS65910 Operating temperature range (°C) -40 to 125
Arm CPU 1 Arm9 Arm (max) (MHz) 456 Coprocessors C674x DSP CPU 32-bit Display type 1 LCD Protocols Ethernet Ethernet MAC 1-Port 10/100 Hardware accelerators PRUSS Operating system Linux, RTOS Security Device identity, Memory protection Rating Catalog Power supply solution TPS65910 Operating temperature range (°C) -40 to 125
PBGA (ZKB) 256 289 mm² 17 x 17
  • Software Support
    • TI DSP/BIOS
    • Chip Support Library and DSP Library
  • Dual Core SoC
    • 375- and 456-MHz ARM926EJ-S RISC MPU
    • 375- and 456-MHz C674x VLIW DSP
  • ARM926EJ-S Core
    • 32-Bit and 16-Bit (Thumb®) Instructions
    • DSP Instruction Extensions
    • Single Cycle MAC
    • ARM® Jazelle® Technology
    • Embedded ICE-RT™ for Real-Time Debug
  • ARM9™ Memory Architecture
    • 16KB of Instruction Cache
    • 16KB of Data Cache
    • 8KB of RAM (Vector Table)
    • 64KB of ROM
  • C674x Instruction Set Features
    • Superset of the C67x+ and C64x+ ISAs
    • Up to 3648 MIPS and 2736 MFLOPS C674x
    • Byte-Addressable (8-, 16-, 32-, and 64-Bit Data)
    • 8-Bit Overflow Protection
    • Bit-Field Extract, Set, Clear
    • Normalization, Saturation, Bit-Counting
    • Compact 16-Bit Instructions
  • C674x Two-Level Cache Memory Architecture
    • 32KB of L1P Program RAM/Cache
    • 32KB of L1D Data RAM/Cache
    • 256KB of L2 Unified Mapped RAM/Cache
    • Flexible RAM/Cache Partition (L1 and L2)
  • Enhanced Direct Memory Access Controller 3 (EDMA3):
    • 2 Transfer Controllers
    • 32 Independent DMA Channels
    • 8 Quick DMA Channels
    • Programmable Transfer Burst Size
  • TMS320C674x Fixed- and Floating-Point VLIW DSP Core
    • Load-Store Architecture with Nonaligned Support
    • 64 General-Purpose Registers (32-Bit)
    • Six ALU (32- and 40-Bit) Functional Units
      • Supports 32-Bit Integer, SP (IEEE Single Precision/32-Bit) and DP (IEEE Double Precision/64-Bit) Floating Point
      • Supports up to Four SP Additions Per Clock, Four DP Additions Every 2 Clocks
      • Supports up to Two Floating-Point (SP or DP) Reciprocal Approximation (RCPxP) and Square-Root Reciprocal Approximation (RSQRxP) Operations Per Cycle
    • Two Multiply Functional Units
      • Mixed-Precision IEEE Floating Point Multiply Supported up to:
        • 2 SP x SP -> SP Per Clock
        • 2 SP x SP -> DP Every Two Clocks
        • 2 SP x DP -> DP Every Three Clocks
        • 2 DP x DP -> DP Every Four Clocks
      • Fixed-Point Multiply Supports Two 32 x 32-Bit Multiplies, Four 16 x 16-Bit Multiplies, or Eight 8 x 8-Bit Multiplies per Clock Cycle, and Complex Multiples
    • Instruction Packing Reduces Code Size
    • All Instructions Conditional
    • Hardware Support for Modulo Loop
      Operation
    • Protected Mode Operation
    • Exceptions Support for Error Detection and Program Redirection
  • 128KB of RAM Shared Memory
  • 3.3-V LVCMOS I/Os (Except for USB Interfaces)
  • Two External Memory Interfaces:
    • EMIFA
      • NOR (8- or 16-Bit-Wide Data)
      • NAND (8- or 16-Bit-Wide Data)
      • 16-Bit SDRAM with 128-MB Address Space
    • EMIFB
      • 32-Bit or 16-Bit SDRAM with 256-MB Address Space
  • Three Configurable 16550-Type UART Modules:
    • UART0 with Modem Control Signals
    • Autoflow Control Signals (CTS, RTS) on UART0 Only
    • 16-Byte FIFO
    • 16x or 13x Oversampling Option
  • LCD Controller
  • Two Serial Peripheral Interfaces (SPIs) Each with One Chip Select
  • Multimedia Card (MMC)/Secure Digital (SD) Card Interface with Secure Data I/O (SDIO)
  • Two Master and Slave Inter-Integrated Circuit (I2C Bus™)
  • One Host-Port Interface (HPI) with 16-Bit-Wide Muxed Address/Data Bus for High Bandwidth
  • Programmable Real-Time Unit Subsystem (PRUSS)
    • Two Independent Programmable Realtime Unit (PRU) Cores
      • 32-Bit Load and Store RISC Architecture
      • 4KB of Instruction RAM per Core
      • 512 Bytes of Data RAM per Core
      • PRUSS can be Disabled via Software to Save Power
    • Standard Power-Management Mechanism
      • Clock Gating
      • Entire Subsystem Under a Single PSC Clock Gating Domain
    • Dedicated Interrupt Controller
    • Dedicated Switched Central Resource
  • USB 1.1 OHCI (Host) with Integrated PHY (USB1)
  • USB 2.0 OTG Port with Integrated PHY (USB0)
    • USB 2.0 High- and Full-Speed Client
    • USB 2.0 High-, Full-, and Low-Speed Host
    • End Point 0 (Control)
    • End Points 1,2,3,4 (Control, Bulk, Interrupt or ISOC) RX and TX
  • Three Multichannel Audio Serial Ports (McASPs):
    • Six Clock Zones and 28 Serial Data Pins
    • Supports TDM, I2S, and Similar Formats
    • DIT-Capable (McASP2)
    • FIFO Buffers for Transmit and Receive
  • 10/100 Mbps Ethernet MAC (EMAC):
    • IEEE 802.3 Compliant (3.3-V I/O Only)
    • RMII Media-Independent Interface
    • Management Data I/O (MDIO) Module
  • Real-Time Clock with 32-kHz Oscillator and Separate Power Rail
  • One 64-Bit General-Purpose Timer (Configurable as Two 32-Bit Timers)
  • One 64-Bit General-Purpose Watchdog Timer (Configurable as Two 32-Bit General-Purpose Timers)
  • Three Enhanced Pulse Width Modulators (eHRPWMs):
    • Dedicated 16-Bit Time-Base Counter with Period and Frequency Control
    • 6 Single Edge, 6 Dual Edge Symmetric, or 3 Dual Edge Asymmetric Outputs
    • Dead-Band Generation
    • PWM Chopping by High-Frequency Carrier
    • Trip Zone Input
  • Three 32-Bit Enhanced Capture (eCAP) Modules:
    • Configurable as 3 Capture Inputs or 3 Auxiliary Pulse Width Modulator (APWM) Outputs
    • Single-Shot Capture of up to Four Event Time-Stamps
  • Two 32-Bit Enhanced Quadrature Encoder Pulse (eQEP) Modules
  • 256-Ball Pb-Free Plastic Ball Grid Array (PBGA) [ZKB Suffix], 1.0-mm Ball Pitch
  • Commercial, Industrial, Extended, or Automotive Temperature
  • Software Support
    • TI DSP/BIOS
    • Chip Support Library and DSP Library
  • Dual Core SoC
    • 375- and 456-MHz ARM926EJ-S RISC MPU
    • 375- and 456-MHz C674x VLIW DSP
  • ARM926EJ-S Core
    • 32-Bit and 16-Bit (Thumb®) Instructions
    • DSP Instruction Extensions
    • Single Cycle MAC
    • ARM® Jazelle® Technology
    • Embedded ICE-RT™ for Real-Time Debug
  • ARM9™ Memory Architecture
    • 16KB of Instruction Cache
    • 16KB of Data Cache
    • 8KB of RAM (Vector Table)
    • 64KB of ROM
  • C674x Instruction Set Features
    • Superset of the C67x+ and C64x+ ISAs
    • Up to 3648 MIPS and 2736 MFLOPS C674x
    • Byte-Addressable (8-, 16-, 32-, and 64-Bit Data)
    • 8-Bit Overflow Protection
    • Bit-Field Extract, Set, Clear
    • Normalization, Saturation, Bit-Counting
    • Compact 16-Bit Instructions
  • C674x Two-Level Cache Memory Architecture
    • 32KB of L1P Program RAM/Cache
    • 32KB of L1D Data RAM/Cache
    • 256KB of L2 Unified Mapped RAM/Cache
    • Flexible RAM/Cache Partition (L1 and L2)
  • Enhanced Direct Memory Access Controller 3 (EDMA3):
    • 2 Transfer Controllers
    • 32 Independent DMA Channels
    • 8 Quick DMA Channels
    • Programmable Transfer Burst Size
  • TMS320C674x Fixed- and Floating-Point VLIW DSP Core
    • Load-Store Architecture with Nonaligned Support
    • 64 General-Purpose Registers (32-Bit)
    • Six ALU (32- and 40-Bit) Functional Units
      • Supports 32-Bit Integer, SP (IEEE Single Precision/32-Bit) and DP (IEEE Double Precision/64-Bit) Floating Point
      • Supports up to Four SP Additions Per Clock, Four DP Additions Every 2 Clocks
      • Supports up to Two Floating-Point (SP or DP) Reciprocal Approximation (RCPxP) and Square-Root Reciprocal Approximation (RSQRxP) Operations Per Cycle
    • Two Multiply Functional Units
      • Mixed-Precision IEEE Floating Point Multiply Supported up to:
        • 2 SP x SP -> SP Per Clock
        • 2 SP x SP -> DP Every Two Clocks
        • 2 SP x DP -> DP Every Three Clocks
        • 2 DP x DP -> DP Every Four Clocks
      • Fixed-Point Multiply Supports Two 32 x 32-Bit Multiplies, Four 16 x 16-Bit Multiplies, or Eight 8 x 8-Bit Multiplies per Clock Cycle, and Complex Multiples
    • Instruction Packing Reduces Code Size
    • All Instructions Conditional
    • Hardware Support for Modulo Loop
      Operation
    • Protected Mode Operation
    • Exceptions Support for Error Detection and Program Redirection
  • 128KB of RAM Shared Memory
  • 3.3-V LVCMOS I/Os (Except for USB Interfaces)
  • Two External Memory Interfaces:
    • EMIFA
      • NOR (8- or 16-Bit-Wide Data)
      • NAND (8- or 16-Bit-Wide Data)
      • 16-Bit SDRAM with 128-MB Address Space
    • EMIFB
      • 32-Bit or 16-Bit SDRAM with 256-MB Address Space
  • Three Configurable 16550-Type UART Modules:
    • UART0 with Modem Control Signals
    • Autoflow Control Signals (CTS, RTS) on UART0 Only
    • 16-Byte FIFO
    • 16x or 13x Oversampling Option
  • LCD Controller
  • Two Serial Peripheral Interfaces (SPIs) Each with One Chip Select
  • Multimedia Card (MMC)/Secure Digital (SD) Card Interface with Secure Data I/O (SDIO)
  • Two Master and Slave Inter-Integrated Circuit (I2C Bus™)
  • One Host-Port Interface (HPI) with 16-Bit-Wide Muxed Address/Data Bus for High Bandwidth
  • Programmable Real-Time Unit Subsystem (PRUSS)
    • Two Independent Programmable Realtime Unit (PRU) Cores
      • 32-Bit Load and Store RISC Architecture
      • 4KB of Instruction RAM per Core
      • 512 Bytes of Data RAM per Core
      • PRUSS can be Disabled via Software to Save Power
    • Standard Power-Management Mechanism
      • Clock Gating
      • Entire Subsystem Under a Single PSC Clock Gating Domain
    • Dedicated Interrupt Controller
    • Dedicated Switched Central Resource
  • USB 1.1 OHCI (Host) with Integrated PHY (USB1)
  • USB 2.0 OTG Port with Integrated PHY (USB0)
    • USB 2.0 High- and Full-Speed Client
    • USB 2.0 High-, Full-, and Low-Speed Host
    • End Point 0 (Control)
    • End Points 1,2,3,4 (Control, Bulk, Interrupt or ISOC) RX and TX
  • Three Multichannel Audio Serial Ports (McASPs):
    • Six Clock Zones and 28 Serial Data Pins
    • Supports TDM, I2S, and Similar Formats
    • DIT-Capable (McASP2)
    • FIFO Buffers for Transmit and Receive
  • 10/100 Mbps Ethernet MAC (EMAC):
    • IEEE 802.3 Compliant (3.3-V I/O Only)
    • RMII Media-Independent Interface
    • Management Data I/O (MDIO) Module
  • Real-Time Clock with 32-kHz Oscillator and Separate Power Rail
  • One 64-Bit General-Purpose Timer (Configurable as Two 32-Bit Timers)
  • One 64-Bit General-Purpose Watchdog Timer (Configurable as Two 32-Bit General-Purpose Timers)
  • Three Enhanced Pulse Width Modulators (eHRPWMs):
    • Dedicated 16-Bit Time-Base Counter with Period and Frequency Control
    • 6 Single Edge, 6 Dual Edge Symmetric, or 3 Dual Edge Asymmetric Outputs
    • Dead-Band Generation
    • PWM Chopping by High-Frequency Carrier
    • Trip Zone Input
  • Three 32-Bit Enhanced Capture (eCAP) Modules:
    • Configurable as 3 Capture Inputs or 3 Auxiliary Pulse Width Modulator (APWM) Outputs
    • Single-Shot Capture of up to Four Event Time-Stamps
  • Two 32-Bit Enhanced Quadrature Encoder Pulse (eQEP) Modules
  • 256-Ball Pb-Free Plastic Ball Grid Array (PBGA) [ZKB Suffix], 1.0-mm Ball Pitch
  • Commercial, Industrial, Extended, or Automotive Temperature

The OMAP-L137 device is a low-power applications processor based on an ARM926EJ-S and a TMS320C674x DSP core. It consumes significantly lower power than other members of the TMS320C6000 platform of DSPs.

The OMAP-L137 device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance life through the maximum flexibility of a fully integrated mixed processor solution.

The dual-core architecture of the OMAP-L137 device provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C674x DSP core and an ARM926EJ-S core.

The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously.

The ARM core has a coprocessor 15 (CP15), protection module, and data and program Memory Management Units (MMUs) with table look-aside buffers. The ARM core has separate 16-KB instruction and 16KB of data caches. Both memory blocks are four-way associative with virtual index virtual tag (VIVT). The ARM core also has 8KB of RAM (Vector Table) and 64KB of ROM.

The OMAP-L137 DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 32-KB direct mapped cache and the Level 1 data cache (L1D) is a 32-KB 2-way set-associative cache. The Level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by ARM and other hosts in the system, an additional 128KB of RAM shared memory is available for use by other hosts without affecting DSP performance.

The peripheral set includes: a 10/100 Mbps Ethernet MAC (EMAC) with a management data input/output (MDIO) module; two I2C Bus interfaces; 3 multichannel audio serial ports (McASPs) with 16/12/4 serializers and FIFO buffers; two 64-bit general-purpose timers each configurable (one configurable as watchdog); a configurable 16-bit host-port interface (HPI); up to 8 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART interfaces (one with both RTS and CTS); three enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; two 32-bit enhanced quadrature encoded pulse (eQEP) peripherals; and 2 external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals, and a higher speed memory interface (EMIFB) for SDRAM.

The Ethernet Media Access Controller (EMAC) provides an efficient interface between the OMAP-L137 device and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration.

The HPI, I2C, SPI, USB1.1, and USB2.0 ports allow the OMAP-L137 device to easily control peripheral devices and/or communicate with host processors.

The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides.

The OMAP-L137 device has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution.

The OMAP-L137 device is a low-power applications processor based on an ARM926EJ-S and a TMS320C674x DSP core. It consumes significantly lower power than other members of the TMS320C6000 platform of DSPs.

The OMAP-L137 device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance life through the maximum flexibility of a fully integrated mixed processor solution.

The dual-core architecture of the OMAP-L137 device provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C674x DSP core and an ARM926EJ-S core.

The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously.

The ARM core has a coprocessor 15 (CP15), protection module, and data and program Memory Management Units (MMUs) with table look-aside buffers. The ARM core has separate 16-KB instruction and 16KB of data caches. Both memory blocks are four-way associative with virtual index virtual tag (VIVT). The ARM core also has 8KB of RAM (Vector Table) and 64KB of ROM.

The OMAP-L137 DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 32-KB direct mapped cache and the Level 1 data cache (L1D) is a 32-KB 2-way set-associative cache. The Level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by ARM and other hosts in the system, an additional 128KB of RAM shared memory is available for use by other hosts without affecting DSP performance.

The peripheral set includes: a 10/100 Mbps Ethernet MAC (EMAC) with a management data input/output (MDIO) module; two I2C Bus interfaces; 3 multichannel audio serial ports (McASPs) with 16/12/4 serializers and FIFO buffers; two 64-bit general-purpose timers each configurable (one configurable as watchdog); a configurable 16-bit host-port interface (HPI); up to 8 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART interfaces (one with both RTS and CTS); three enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; two 32-bit enhanced quadrature encoded pulse (eQEP) peripherals; and 2 external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals, and a higher speed memory interface (EMIFB) for SDRAM.

The Ethernet Media Access Controller (EMAC) provides an efficient interface between the OMAP-L137 device and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration.

The HPI, I2C, SPI, USB1.1, and USB2.0 ports allow the OMAP-L137 device to easily control peripheral devices and/or communicate with host processors.

The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides.

The OMAP-L137 device has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution.

다운로드 스크립트와 함께 비디오 보기 동영상

기술 자료

star =TI에서 선정한 이 제품의 인기 문서
검색된 결과가 없습니다. 검색어를 지우고 다시 시도하십시오.
56개 모두 보기
유형 직함 날짜
* Data sheet OMAP-L137 Low-Power Applications Processor datasheet (Rev. G) PDF | HTML 2014/06/17
* Errata OMAP-L137 C6000 DSP+ARM Processor Errata (Silicon Revs 3.0, 2.1, 2.0, 1.1 & 1.0) (Rev. I) 2014/06/17
* User guide OMAP-L137 C6000 DSP+ARM Processor Technical Reference Manual (Rev. D) 2016/09/21
User guide ARM Assembly Language Tools v20.2.0.LTS User's Guide (Rev. Z) PDF | HTML 2023/03/30
User guide ARM Optimizing C/C++ Compiler v20.2.0.LTS User's Guide (Rev. W) PDF | HTML 2023/03/30
Application note High-Speed Interface Layout Guidelines (Rev. J) PDF | HTML 2023/02/24
User guide SYS/BIOS (TI-RTOS Kernel) User's Guide (Rev. V) 2020/06/01
User guide ARM Assembly Language Tools v19.6.0.STS User's Guide (Rev. X) 2019/06/03
User guide ARM Optimizing C/C++ Compiler v19.6.0.STS User's Guide (Rev. U) 2019/06/03
Application note General Hardware Design/BGA PCB Design/BGA 2019/02/22
Application note OMAP-L13x / C674x / AM1x schematic review guidelines PDF | HTML 2019/02/14
Application note McASP Design Guide - Tips, Tricks, and Practical Examples 2019/01/10
User guide ARM Assembly Language Tools v18.12.0.LTS User's Guide (Rev. W) 2018/11/19
User guide ARM Optimizing C/C++ Compiler v18.12.0.LTS User's Guide (Rev. T) 2018/11/19
White paper Designing professional audio mixers for every scenario 2018/06/28
User guide ARM Assembly Language Tools v18.1.0.LTS User's Guide (Rev. U) 2018/01/16
User guide ARM Optimizing C/C++ Compiler v18.1.0.LTS User's Guide (Rev. R) 2018/01/16
User guide ARM Assembly Language Tools v17.9.0.STS User's Guide (Rev. T) 2017/09/30
User guide ARM Optimizing C/C++ Compiler v17.9.0.STS User's Guide (Rev. Q) 2017/09/30
User guide ARM Assembly Language Tools v17.6.0.STS User's Guide (Rev. S) 2017/06/21
User guide ARM Optimizing C/C++ Compiler v17.6.0.STS User's Guide (Rev. P) 2017/06/21
User guide ARM Assembly Language Tools v16.9.0.LTS User's Guide (Rev. P) 2016/04/30
User guide ARM Optimizing C/C++ Compiler v16.9.0.LTS User's Guide (Rev. M) 2016/04/30
User guide ARM Assembly Language Tools v5.2 User's Guide (Rev. M) 2014/11/05
User guide ARM Optimizing C/C++ Compiler v5.2 User's Guide (Rev. J) 2014/11/05
User guide TMS320C6000 Assembly Language Tools v 7.4 User's Guide (Rev. W) 2012/08/21
User guide TMS320C6000 Optimizing Compiler v 7.4 User's Guide (Rev. U) 2012/08/21
Application note Using the OMAP-L1x7 Bootloader (Rev. G) 2012/06/01
Application note Powering the OMAP-L132/OMAP-L137/OMAP-L138 Processor with the TPS650061 2012/04/13
White paper MityDSP®-L138F Software Defined Radio Using uPP Data Transfer (Rev. A) 2012/02/02
Application note Introduction to TMS320C6000 DSP Optimization 2011/10/06
User guide TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide (Rev. F) 2011/09/14
White paper OpenCV on TI’s DSP+ARM® 2011/07/27
White paper Software and Hardware Design Challenges Due to Dynamic Raw NAND Market 2011/05/19
Application note Power Solution Using Discrete DC/DC Converters and LDOs (Rev. B) 2010/08/26
User guide TMS320C674x DSP Megamodule Reference Guide (Rev. A) 2010/08/03
User guide TMS320C674x DSP CPU and Instruction Set User's Guide (Rev. B) 2010/07/30
Application note OMAP-L137 Power Consumption Summary 2010/06/30
Application note Power Solution using LDO's (Rev. A) 2010/03/25
Application note Power Solution using a Dual DCDC Converter and a LDO (Rev. A) 2010/03/25
User guide TMS320C6000 Assembly Language Tools v 7.0 User's Guide (Rev. S) 2010/03/18
User guide TMS320C6000 Optimizing Compiler v 7.0 User's Guide (Rev. Q) 2010/03/18
More literature OMAP-L1x Software Solutions Diagram (Rev. B) 2009/12/07
Application note Canny Edge Detection Implementation on TMS320C64x/64x+ Using VLIB 2009/11/25
Application note OMAP-L137 TMS320C6747/6745/6743 Pin Multiplexing Utility (Rev. A) 2009/09/26
Application note OMAP-L137 Complementary Products 2009/09/23
White paper Efficient Fixed- and Floating-Point Code Execution on the TMS320C674x Core 2009/06/24
Application note TMS320C6747/45/43 & OMAP-L1x7 USB Downstream Host Compliance Testing 2009/03/12
Application note TMS320C6747/45/43 & OMAP-L1x7 USB Upstream Device Compliance Testing 2009/03/12
Application note TMS320C674x/OMAP-L1x USB Compliance Checklist 2009/03/12
Application note OMAP-L137 Technical Brief (Rev. B) 2009/02/18
User guide TMS320C674x DSP Cache User's Guide (Rev. A) 2009/02/11
User guide TMS320C6000 Assembly Language Tools v 6.1 User's Guide (Rev. Q) 2008/05/15
User guide TMS320C6000 Optimizing Compiler v 6.1 User's Guide (Rev. O) 2008/05/15
User guide TMS320C6000 Assembly Language Tools v 6.0 Beta User's Guide (Rev. P) 2006/10/31
User guide TMS320C6000 Optimizing Compiler v 6.0 Beta User's Guide (Rev. N) 2005/07/29

설계 및 개발

추가 조건 또는 필수 리소스는 사용 가능한 경우 아래 제목을 클릭하여 세부 정보 페이지를 확인하세요.

평가 보드

TMDSOSKL137 — OMAP-L137/TMS320C6747 부동 소수점 DSP 스타터 키트

Spectrum Digital Inc.와의 협력을 통해 개발된 OMAP-L137/TMS320C6747 부동 소수점 스타트 키트는 TI의 OMAP-L13x 애플리케이션 프로세서와 TMS320C674x 고정/부동 소수점 DSP(TMS320C6747, TMS320C6745 및 TMS320C6743) 기반의 고정밀 애플리케이션 개발 속도를 높이기 위해 개발된 저비용 개발 플랫폼입니다. 이 키트는 진정한 플러그 앤 플레이 기능을 위해 USB 통신을 사용합니다. 전문가와 초보 설계자 모두 스타터 키트의 완전한 기능을 갖춘 Code (...)

TI.com에서 구매 불가
디버그 프로브

TMDSEMU200-U — XDS200 USB 디버그 프로브

XDS200은 TI 임베디드 디바이스 디버깅에 사용되는 디버그 프로브(에뮬레이터)입니다. XDS200은 저렴한 XDS110 및 고성능 XDS560v2에 비해 저렴한 비용으로 우수한 성능을 균형 있게 제공합니다. 단일 포드에서 광범위한 표준(IEEE1149.1, IEEE1149.7, SWD)을 지원합니다. 모든 XDS 디버그 프로브는 ETB(Embedded Trace Buffer)를 특징으로 하는 모든 Arm® 및 DSP 프로세서에서 코어 및 시스템 추적을 지원합니다. 핀을 통한 코어 추적의 경우 XDS560v2 PRO TRACE가 (...)

TI.com에서 구매 불가
디버그 프로브

TMDSEMU560V2STM-U — XDS560v2 시스템 추적 USB 디버그 프로브

XDS560v2는 디버그 프로브의 XDS560™ 제품군 중 최고의 성능을 가진 제품으로, 기존의 JTAG 표준(IEEE1149.1)과 cJTAG(IEEE1149.7)를 모두 지원합니다. SWD(직렬 와이어 디버그)는 지원하지 않습니다.

모든 XDS 디버그 프로브는 ETB(Embedded Trace Buffer)를 특징으로 하는 모든 ARM 및 DSP 프로세서에서 코어 및 시스템 추적을 지원합니다. 핀을 통한 추적의 경우 XDS560v2 PRO TRACE가 필요합니다.

XDS560v2는 MIPI HSPT 60핀 커넥터(TI 14핀, (...)

TI.com에서 구매 불가
디버그 프로브

TMDSEMU560V2STM-UE — XDS560v2 시스템 추적 USB 및 이더넷 디버그 프로브

The XDS560v2 is the highest performance of the XDS family of debug probes and supports both the traditional JTAG standard (IEEE1149.1) and cJTAG (IEEE1149.7). Note that it does not support serial wire debug (SWD).

All XDS debug probes support Core and System Trace in all ARM and DSP processors that (...)

TI.com에서 구매 불가
소프트웨어 개발 키트(SDK)

PROCESSOR-SDK-RTOS-OMAPL137 TI-RTOS Processor SDK for OMAP-L137 and C6747, C6745, C6743 (No design support from TI available. Refer to Overview- RTOS Highlights for details.)

Processor SDK (Software Development Kit) is a unified software platform for TI embedded processors providing easy setup and fast out-of-the-box access to benchmarks and demos.  All releases of Processor SDK are consistent across TI’s broad portfolio, allowing developers to seamlessly (...)

지원되는 제품 및 하드웨어

지원되는 제품 및 하드웨어

제품
Arm 기반 프로세서
OMAP-L137 저전력 C674x 부동 소수점 DSP + Arm9 프로세서 - 최대 456MHz
하드웨어 개발
평가 보드
TMDSOSKL137 OMAP-L137/TMS320C6747 부동 소수점 DSP 스타터 키트
다운로드 옵션
드라이버 또는 라이브러리

MATHLIB — 부동 소수점 디바이스용 DSP 수학 라이브러리

The Texas Instruments math library is an optimized floating-point math function library for C programmers using TI floating point devices. These routines are typically used in computationally intensive real-time applications where optimal execution speed is critical. By using these routines instead (...)
드라이버 또는 라이브러리

SPRC121 — TMS320C67x DSP 라이브러리

The TI C67x DSPLIB is an optimized floating-point DSP Function Library for C programmers using TMS320C67x devices. It includes C-callable, assembly-optimized general-purpose signal-processing routines. These routines are typically used in computationally intensive real-time applications where (...)
사용 설명서: PDF
드라이버 또는 라이브러리

SPRC264 — TMS320C5000/6000 이미지 라이브러리(IMGLIB)

C5000/6000 Image Processing Library (IMGLIB) is an optimized image/video processing function library for C programmers. It includes C-callable general-purpose image/video processing routines that are typically used in computationally intensive real-time applications. With these routines, higher (...)
사용 설명서: PDF
드라이버 또는 라이브러리

SPRC265 — TMS320C6000 DSP 라이브러리(DSPLIB)

TMS320C6000 Digital Signal Processor Library (DSPLIB) is a platform-optimized DSP function library for C programmers. It includes C-callable, general-purpose signal-processing routines that are typically used in computationally intensive real-time applications. With these routines, higher (...)
사용 설명서: PDF
드라이버 또는 라이브러리

TELECOMLIB — 텔레콤 및 미디어 라이브러리 - TMS320C64x+ 및 TMS320C55x 프로세서를 위한 FAXLIB, VoLIB 및 AEC/AER

Voice Library - VoLIB provides components that, together, facilitate the development of the signal processing chain for Voice over IP applications such as infrastructure, enterprise, residential gateways and IP phones. Together with optimized implementations of ITU-T voice codecs, that can be (...)
드라이버 또는 라이브러리

WIND-3P-VXWORKS-LINUX-OS — Wind River 프로세서 VxWorks 및 Linux 운영 체제

Wind River is a global leader in delivering software for the Internet of Things (IoT). The company’s technology has been powering the safest, most secure devices in the world since 1981 and today is found in more than 2 billion products. Wind River offers a comprehensive edge-to-cloud product (...)
IDE, 구성, 컴파일러 또는 디버거

CCSTUDIO Code Composer Studio integrated development environment (IDE)

Code Composer Studio is an integrated development environment (IDE) for TI's microcontrollers and processors. It is comprised of a rich suite of tools used to build, debug, analyze and optimize embedded applications. Code Composer Studio is available across Windows®, Linux® and macOS® platforms.

(...)

지원되는 제품 및 하드웨어

지원되는 제품 및 하드웨어

이 설계 리소스는 이러한 범주의 제품 대부분을 지원합니다.

제품 세부 정보 페이지에서 지원을 확인하십시오.

시작 다운로드 옵션
운영 체제(OS)

MG-3P-NUCLEUS-RTOS — Mentor Graphics Nucleus RTOS

Software driven power management is crucial for battery operated or low power budget embedded systems. Embedded developers can now take advantage of the latest power saving features in popular TI devices with the built-in Power Management Framework in the Nucleus RTOS. Developers specify (...)
소프트웨어 코덱

ADT-3P-DSPVOIPCODECS — Adaptive Digital Technologies DSP VoIP, 음성 및 오디오 코덱

Adaptive Digital is a developer of voice quality enhancement algorithms, and best-in-class acoustic echo cancellation software that work with TI DSPs. Adaptive Digital has extensive experience in the algorithm development, implementation, optimization and configuration tuning. They provide (...)
소프트웨어 코덱

AURO-3P-3DENGINE — Auro Technologies Auro-CODEC 및 Auro-Matic 소프트웨어

Auro Technologies’ Auro-Engine includes their Auro-Codec and Auro-Matic elements for real time audio stream encoding and up mixing affording 3D audio user experiences. The Auro-Codec and Auro-Matic algorithms have been ported to select TI C6x DSPs.
소프트웨어 코덱

VOCAL-3P-DSPVOIPCODECS — Vocal technologies DSP VoIP 코덱

With over 25 years of assembly and C code development, VOCAL modular software suite is available for a wide variety of TI DSPs. Products include ATAs, VoIP servers and gateways, HPNA-based IPBXs, video surveillance, voice and video conferencing, voice and data RF devices, RoIP gateways, secure (...)
시뮬레이션 모델

OMAP-L137 ZKB BSDL Model (Rev. B)

SPRM328B.ZIP (19 KB) - BSDL Model
시뮬레이션 모델

OMAP-L137 ZKB IBIS Model (Rev. A)

SPRM333A.ZIP (176 KB) - IBIS Model
레퍼런스 디자인

PR2084 — TPS650061을 사용하여 OMAP-L132/OMAP-L137/OMAP-L138에 전원 공급

This reference design presents a complete power solution and low-cost, discrete sequencing circuit for the OMAP-L132, OMAP-L137, and OMAP-L138 processors.
Test report: PDF
패키지 CAD 기호, 풋프린트 및 3D 모델
PBGA (ZKB) 256 Ultra Librarian

주문 및 품질

포함된 정보:
  • RoHS
  • REACH
  • 디바이스 마킹
  • 납 마감/볼 재질
  • MSL 등급/피크 리플로우
  • MTBF/FIT 예측
  • 물질 성분
  • 인증 요약
  • 지속적인 신뢰성 모니터링
포함된 정보:
  • 팹 위치
  • 조립 위치

권장 제품에는 본 TI 제품과 관련된 매개 변수, 평가 모듈 또는 레퍼런스 디자인이 있을 수 있습니다.

지원 및 교육

TI 엔지니어의 기술 지원을 받을 수 있는 TI E2E™ 포럼

콘텐츠는 TI 및 커뮤니티 기고자에 의해 "있는 그대로" 제공되며 TI의 사양으로 간주되지 않습니다. 사용 약관을 참조하십시오.

품질, 패키징, TI에서 주문하는 데 대한 질문이 있다면 TI 지원을 방문하세요. ​​​​​​​​​​​​​​

동영상