인터페이스 I2C & I3C ICs I2C & I3C level shifters, buffers & hubs

2비트 레벨 변환 400kHz I2C/SMBus 버퍼/리피터

PCA9517은(는) 새 설계에 권장하지 않습니다
이 제품은 이전 설계를 지원하기 위해 계속 생산 중이지만 새로운 설계에 사용하는 것은 권장하지 않습니다. 다음 대안 중 하나를 고려하십시오.
open-in-new 대안 비교
비교 대상 장치와 유사한 기능
TCA9517 활성 전원 끔 고임피던스를 갖춘 2비트 레벨 변환 400kHz I2C/SMBus 버퍼/리피터 The TCA9517 addresses the application usage limitations as specified in the PCA9517 datasheet

제품 상세 정보

Frequency (max) (MHz) 0.4 VCCA (min) (V) 0.9 VCCA (max) (V) 5.5 VCCB (min) (V) 2.7 VCCB (max) (V) 5.5 Supply restrictions No rule Rating Catalog Operating temperature range (°C) -40 to 85
Frequency (max) (MHz) 0.4 VCCA (min) (V) 0.9 VCCA (max) (V) 5.5 VCCB (min) (V) 2.7 VCCB (max) (V) 5.5 Supply restrictions No rule Rating Catalog Operating temperature range (°C) -40 to 85
SOIC (D) 8 29.4 mm² 4.9 x 6 VSSOP (DGK) 8 14.7 mm² 3 x 4.9
  • Two-Channel Bidirectional Buffer
  • I2C Bus and SMBus Compatible
  • Operating Supply Voltage Range of 0.9 V to 5.5 V on A Side
  • Operating Supply Voltage Range of 2.7 V to 5.5 V on B Side
  • Voltage-Level Translation From 0.9 V to 5.5 V and 2.7 V to 5.5 V
  • Footprint and Function Replacement for PCA9515A
  • Active-High Repeater-Enable Input
  • Open-Drain I2C I/O
  • 5.5-V Tolerant I2C and Enable Input Support Mixed-Mode Signal Operation
  • Lockup-Free Operation
  • Accommodates Standard Mode and Fast Mode I2C Devices and Multiple Masters
  • Powered-Off High-Impedance I2C Pins
  • 400-kHz Fast I2C Bus
  • Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)
    • 1000-V Charged-Device Model (C101)

All trademarks are the property of their respective owners.

  • Two-Channel Bidirectional Buffer
  • I2C Bus and SMBus Compatible
  • Operating Supply Voltage Range of 0.9 V to 5.5 V on A Side
  • Operating Supply Voltage Range of 2.7 V to 5.5 V on B Side
  • Voltage-Level Translation From 0.9 V to 5.5 V and 2.7 V to 5.5 V
  • Footprint and Function Replacement for PCA9515A
  • Active-High Repeater-Enable Input
  • Open-Drain I2C I/O
  • 5.5-V Tolerant I2C and Enable Input Support Mixed-Mode Signal Operation
  • Lockup-Free Operation
  • Accommodates Standard Mode and Fast Mode I2C Devices and Multiple Masters
  • Powered-Off High-Impedance I2C Pins
  • 400-kHz Fast I2C Bus
  • Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)
    • 1000-V Charged-Device Model (C101)

All trademarks are the property of their respective owners.

This dual bidirectional I2C buffer is operational at 2.7 V to 5.5 V.

The PCA9517 is a BiCMOS integrated circuit intended for I2C bus and SMBus systems. It can also provide bidirectional voltage-level translation (up-translation/down-translation) between low voltages (down to 0.9 V) and higher voltages (2.7 V to 5.5 V) in mixed-mode applications. This device enables I2C and similar bus systems to be extended, without degradation of performance even during level shifting.

The PCA9517 buffers both the serial data (SDA) and the serial clock (SCL) signals on the I2C bus, thus allowing two buses of 400-pF bus capacitance to be connected in an I2C application. This device can also be used to isolate two halves of a bus for voltage and capacitance.

The PCA9517 has two types of drivers—A-side drivers and B-side drivers. All inputs and I/Os are overvoltage tolerant to 5.5 V, even when the device is unpowered (VCCB and/or VCCA = 0 V).

The PCA9517 doesnot support clock stretching and arbitration across the repeater.

The B-side drivers operate from 2.7 V to 5.5 V and behave like the drivers in the PCA9515A. The output low level for this internal buffer is approximately 0.5 V, but the input voltage must be 70 mV or more below the output low level when the output internally is driven low. The higher-voltage low signal is called a buffered low. When the B-side I/O is driven low internally, the low is not recognized as a low by the input. This feature prevents a lockup condition from occurring when the input low condition is released.

This type of design on the B side prevents it from being used in series with the PCA9515A and another PCA9517 (B side). This is because these devices do not recognize buffered low signals as a valid low and do not propagate it as a buffered low again.

The A-side drivers operate from 0.9 V to 5.5 V and drive more current. They do not require the buffered low feature (or the static offset voltage). This means that a low signal on the B side translates to a nearly 0-V low on the A side, which accommodates smaller voltage swings of lower-voltage logic. The output pulldown on the A side drives a hard low, and the input level is set at 0.3 VCCA to accommodate the need for a lower low level in systems where the low-voltage-side supply voltage is as low as 0.9 V.

The A side of two or more PCA9517s can be connected together to allow a star topography, with the A side on the common bus. Also, the A side can be connected directly to any other buffer with static- or dynamic-offset voltage. Multiple PCA9517s can be connected in series, A side to B side, with no buildup in offset voltage and with only time-of-flight delays to consider.

The PCA9517 drivers are enabled when VCCA is above 0.8 V and VCCB is above 2.5 V.

The PCA9517 has an active-high enable (EN) input with an internal pullup to VCCB, which allows the user to select when the repeater is active. This can be used to isolate a badly behaved slave on power-up reset. It should never change state during an I2C operation, because disabling during a bus operation hangs the bus, and enabling part way through a bus cycle could confuse the I2C parts being enabled. The EN input should change state only when the global bus and repeater port are in an idle state, to prevent system failures.

The PCA9517 includes a power-up circuit that keeps the output drivers turned off until VCCB is above 2.5 V and the VCCA is above 0.8 V. VCCB and VCCA can be applied in any sequence at power up. After power up and with the EN high, a low level on the A side (below 0.3 VCCA) turns the corresponding B-side driver (either SDA or SCL) on and drives the B side down to approximately 0.5 V. When the A side rises above 0.3 VCCA, the B-side pulldown driver is turned off and the external pullup resistor pulls the pin high. When the B side falls first and goes below 0.3 VCCB, the A-side driver is turned on and the A side pulls down to 0 V. The B-side pulldown is not enabled unless the B-side voltage goes below 0.4 V. If the B-side low voltage does not go below 0.5 V, the A-side driver turns off when the B-side voltage is above 0.7 VCCB. If the B-side low voltage goes below 0.4 V, the B-side pulldown driver is enabled, and the B side is able to rise to only 0.5 V until the A side rises above 0.3 VCCA. Then the B side continues to rise, being pulled up by the external pullup resistor. VCCA is only used to provide the 0.3 VCCA reference to the A-side input comparators and for the power-good-detect circuit. The PCA9517 logic and all I/Os are powered by the VCCB pin.

As with the standard I2C system, pullup resistors are required to provide the logic-high levels on the buffered bus. The PCA9517 has standard open-collector configuration of the I2C bus. The size of these pullup resistors depends on the system, but each side of the repeater must have a pullup resistor. The device is designed to work with Standard mode and Fast mode I2C devices in addition to SMBus devices. Standard mode I2C devices only specify 3 mA in a generic I2C system, where Standard mode devices and multiple masters are possible. Under certain conditions, higher termination currents can be used.

This dual bidirectional I2C buffer is operational at 2.7 V to 5.5 V.

The PCA9517 is a BiCMOS integrated circuit intended for I2C bus and SMBus systems. It can also provide bidirectional voltage-level translation (up-translation/down-translation) between low voltages (down to 0.9 V) and higher voltages (2.7 V to 5.5 V) in mixed-mode applications. This device enables I2C and similar bus systems to be extended, without degradation of performance even during level shifting.

The PCA9517 buffers both the serial data (SDA) and the serial clock (SCL) signals on the I2C bus, thus allowing two buses of 400-pF bus capacitance to be connected in an I2C application. This device can also be used to isolate two halves of a bus for voltage and capacitance.

The PCA9517 has two types of drivers—A-side drivers and B-side drivers. All inputs and I/Os are overvoltage tolerant to 5.5 V, even when the device is unpowered (VCCB and/or VCCA = 0 V).

The PCA9517 doesnot support clock stretching and arbitration across the repeater.

The B-side drivers operate from 2.7 V to 5.5 V and behave like the drivers in the PCA9515A. The output low level for this internal buffer is approximately 0.5 V, but the input voltage must be 70 mV or more below the output low level when the output internally is driven low. The higher-voltage low signal is called a buffered low. When the B-side I/O is driven low internally, the low is not recognized as a low by the input. This feature prevents a lockup condition from occurring when the input low condition is released.

This type of design on the B side prevents it from being used in series with the PCA9515A and another PCA9517 (B side). This is because these devices do not recognize buffered low signals as a valid low and do not propagate it as a buffered low again.

The A-side drivers operate from 0.9 V to 5.5 V and drive more current. They do not require the buffered low feature (or the static offset voltage). This means that a low signal on the B side translates to a nearly 0-V low on the A side, which accommodates smaller voltage swings of lower-voltage logic. The output pulldown on the A side drives a hard low, and the input level is set at 0.3 VCCA to accommodate the need for a lower low level in systems where the low-voltage-side supply voltage is as low as 0.9 V.

The A side of two or more PCA9517s can be connected together to allow a star topography, with the A side on the common bus. Also, the A side can be connected directly to any other buffer with static- or dynamic-offset voltage. Multiple PCA9517s can be connected in series, A side to B side, with no buildup in offset voltage and with only time-of-flight delays to consider.

The PCA9517 drivers are enabled when VCCA is above 0.8 V and VCCB is above 2.5 V.

The PCA9517 has an active-high enable (EN) input with an internal pullup to VCCB, which allows the user to select when the repeater is active. This can be used to isolate a badly behaved slave on power-up reset. It should never change state during an I2C operation, because disabling during a bus operation hangs the bus, and enabling part way through a bus cycle could confuse the I2C parts being enabled. The EN input should change state only when the global bus and repeater port are in an idle state, to prevent system failures.

The PCA9517 includes a power-up circuit that keeps the output drivers turned off until VCCB is above 2.5 V and the VCCA is above 0.8 V. VCCB and VCCA can be applied in any sequence at power up. After power up and with the EN high, a low level on the A side (below 0.3 VCCA) turns the corresponding B-side driver (either SDA or SCL) on and drives the B side down to approximately 0.5 V. When the A side rises above 0.3 VCCA, the B-side pulldown driver is turned off and the external pullup resistor pulls the pin high. When the B side falls first and goes below 0.3 VCCB, the A-side driver is turned on and the A side pulls down to 0 V. The B-side pulldown is not enabled unless the B-side voltage goes below 0.4 V. If the B-side low voltage does not go below 0.5 V, the A-side driver turns off when the B-side voltage is above 0.7 VCCB. If the B-side low voltage goes below 0.4 V, the B-side pulldown driver is enabled, and the B side is able to rise to only 0.5 V until the A side rises above 0.3 VCCA. Then the B side continues to rise, being pulled up by the external pullup resistor. VCCA is only used to provide the 0.3 VCCA reference to the A-side input comparators and for the power-good-detect circuit. The PCA9517 logic and all I/Os are powered by the VCCB pin.

As with the standard I2C system, pullup resistors are required to provide the logic-high levels on the buffered bus. The PCA9517 has standard open-collector configuration of the I2C bus. The size of these pullup resistors depends on the system, but each side of the repeater must have a pullup resistor. The device is designed to work with Standard mode and Fast mode I2C devices in addition to SMBus devices. Standard mode I2C devices only specify 3 mA in a generic I2C system, where Standard mode devices and multiple masters are possible. Under certain conditions, higher termination currents can be used.

다운로드 스크립트와 함께 비디오 보기 동영상

기술 문서

star =TI에서 선정한 이 제품의 인기 문서
검색된 결과가 없습니다. 검색어를 지우고 다시 시도하십시오.
모두 보기6
유형 직함 날짜
* Data sheet Level-Translating I2C Bus Repeater datasheet (Rev. E) 2014/06/12
Selection guide Logic Guide (Rev. AB) 2017/06/12
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 2015/12/02
Application note Troubleshooting I2C Bus Protocol 2009/10/19
Application note Programming Fun Lights With TI's TCA6507 2007/11/30
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 2004/07/08

설계 및 개발

추가 조건 또는 필수 리소스는 사용 가능한 경우 아래 제목을 클릭하여 세부 정보 페이지를 확인하세요.

시뮬레이션 모델

PCA9517 IBIS Model (Rev. A)

SCPM013A.ZIP (59 KB) - IBIS Model
시뮬레이션 툴

PSPICE-FOR-TI — TI 설계 및 시뮬레이션 툴용 PSpice®

TI용 PSpice®는 아날로그 회로의 기능을 평가하는 데 사용되는 설계 및 시뮬레이션 환경입니다. 완전한 기능을 갖춘 이 설계 및 시뮬레이션 제품군은 Cadence®의 아날로그 분석 엔진을 사용합니다. 무료로 제공되는 TI용 PSpice에는 아날로그 및 전력 포트폴리오뿐 아니라 아날로그 행동 모델에 이르기까지 업계에서 가장 방대한 모델 라이브러리 중 하나가 포함되어 있습니다.

TI 설계 및 시뮬레이션 환경용 PSpice는 기본 제공 라이브러리를 이용해 복잡한 혼합 신호 설계를 시뮬레이션할 수 있습니다. 레이아웃 및 제작에 (...)
시뮬레이션 툴

TINA-TI — SPICE 기반 아날로그 시뮬레이션 프로그램

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
사용 설명서: PDF
레퍼런스 디자인

TIDA-00090 — USB 오디오 레퍼런스 디자인

This reference design, featuring the TLV320AIC3256 audio codec, is a fully-functional USB powered streaming audio platform that allows external audio sources to be connected to the USB port of a PC or laptop. User control is provided via a powerful, easy-to-use Windows-based GUI.

Software (...)

Test report: PDF
회로도: PDF
패키지 다운로드
SOIC (D) 8 옵션 보기
VSSOP (DGK) 8 옵션 보기

주문 및 품질

포함된 정보:
  • RoHS
  • REACH
  • 디바이스 마킹
  • 납 마감/볼 재질
  • MSL 등급/피크 리플로우
  • MTBF/FIT 예측
  • 물질 성분
  • 인증 요약
  • 지속적인 신뢰성 모니터링
포함된 정보:
  • 팹 위치
  • 조립 위치

지원 및 교육

TI 엔지니어의 기술 지원을 받을 수 있는 TI E2E™ 포럼

콘텐츠는 TI 및 커뮤니티 기고자에 의해 "있는 그대로" 제공되며 TI의 사양으로 간주되지 않습니다. 사용 약관을 참조하십시오.

품질, 패키징, TI에서 주문하는 데 대한 질문이 있다면 TI 지원을 방문하세요. ​​​​​​​​​​​​​​

동영상