GERY022 December   2024 AMC0106M05 , AMC0106M25 , AMC0136 , AMC0311D , AMC0311S , AMC0386 , AMC0386-Q1 , AMC1100 , AMC1106M05 , AMC1200 , AMC1200-Q1 , AMC1202 , AMC1203 , AMC1204 , AMC1211-Q1 , AMC1300 , AMC1300B-Q1 , AMC1301 , AMC1301-Q1 , AMC1302-Q1 , AMC1303M2510 , AMC1304L25 , AMC1304M25 , AMC1305M25 , AMC1305M25-Q1 , AMC1306M05 , AMC1306M25 , AMC1311 , AMC1311-Q1 , AMC131M03 , AMC1336 , AMC1336-Q1 , AMC1350 , AMC1350-Q1 , AMC23C12 , AMC3301 , AMC3330 , AMC3330-Q1

 

  1.   1
  2.   Einführung
  3.   Einführung in die isolierte Signalkette
    1.     Vergleich isolierter Verstärker und isolierter Modulatoren
      1.      Kurzfassung
      2.      Einführung in isolierte Verstärker
      3.      Einführung in isolierte Modulatoren
      4.      Leistungsvergleich zwischen isolierten Verstärkern und isolierten Modulatoren
      5.      Isolierte Modulatoren in Traktionsumrichtern
      6.      Isolierte Verstärker und Modulatoren, Empfehlungen
      7.      Fazit
    2.     Die ersten Isolationsverstärker von TI mit extrem breiten Luft- und Kriechstrecken
      1.      Anwendungshinweis
  4.   Auswahlbäume
  5.   Strommessung
    1.     Shunt-Widerstandsauswahl für isolierte Datenwandler
      1.      17
    2.     Designüberlegungen für die isolierte Strommessung
      1.      19
      2.      Fazit
      3.      Quellennachweise
      4.      Verwandte Websites
    3.     Isolierte Strommessschaltung mit ±50 mV-Eingang und unsymmetrischem Ausgang
      1.      24
    4.     Isolierte Strommessschaltung mit ±50 mV-Eingang und Differenzausgang
      1.      26
    5.     Isolierte Strommessschaltung mit ±250 mV Eingangsbereich und unsymmetrischer Ausgangsspannung
      1.      Designziele
      2.      Designbeschreibung
      3.      Designhinweise
      4.      Designschritte
      5.      Design-Simulationen
      6.      DC-Simulationsergebnisse
      7.      Ergebnisse der AC-Simulation im geschlossenen Regelkreis
      8.      Ergebnisse der Transienten-Simulation
      9.      Designreferenzen
      10.      Design empfohlener isolierter Verstärker
      11.      Design Alternativer Isolierter Verstärker
    6.     Isolierter Strommessschaltkreis mit ±250 mV-Eingang und Differenzausgang
      1.      Designziele
      2.      Designbeschreibung
      3.      Designhinweise
      4.      Designschritte
      5.      Design-Simulationen
      6.      DC-Simulationsergebnisse
      7.      Ergebnisse der Closed-Loop-AC-Simulation
      8.      Ergebnisse der Transienten-Simulation
      9.      Designreferenzen
      10.      Vorgestellte Operationsverstärker
      11.      Design alternativer Operationsverstärker
    7.     Isolierter Überstromschutzschaltkreis
      1.      52
    8.     Anschluss eines Differenzialausgangsverstärkers (isoliert) an einen A/D-Wandler mit unsymmetrischem Eingang
      1.      54
    9.     Verwendung von AMC3311 zur Stromversorgung des AMC23C11 für isolierte Sensorik und Fehlererkennung
      1.      Anwendungshinweis
    10.     Isolierte Strommessschaltung mit Frontend-Verstärkungsstufe
      1.      58
    11.     Genauigkeitsvergleich von isolierten Shunt- und Geschlossener Regelkreis-Strommessungen
      1.      60
  6.   Spannungserfassung
    1.     Maximieren Sie die Leistungswandlung und die Wirksamkeit der Motorsteuerung durch isolierte Spannungserfassung
      1.      63
      2.      Lösungen zur Hochspannungserfassung
      3.      Integrierte Widerstandsbausteine
      4.      Unsymmetrische Ausgangsspannung
      5.      Anwendungsfälle für integrierte isolierte Spannungserkennung
      6.      Fazit
      7.      Weitere Ressourcen
    2.     Höhere Genauigkeit und Leistung mit integrierten isolierten Verstärkern und Modulatoren mit Hochspannungswiderstand
      1.      Kurzfassung
      2.      Einführung
      3.      Vorteile von isolierten Verstärkern und Modulatoren mit Hochspannungswiderstand
        1.       Platzsparend
        2.       Verbesserte Temperatur- und Lebensdauerdrift von integrierten HV-Widerständen
        3.       Ergebnisse mit hoher Genauigkeit
        4.       Beispiel für vollständig integrierte Widerstände vs. Zusätzlicher externer Widerstand
        5.       Bausteinauswahlbaum und gängige AC/DC-Anwendungsfälle
      4.      Zusammenfassung
      5.      Quellennachweise
    3.     Isolierte Verstärker mit differenziellen, unsymmetrischen Festverstärkern und ratiometrischen Ausgängen für Spannungssensoranwendungen
      1.      Kurzfassung
      2.      Einführung
      3.      Übersicht über differenzielle, unsymmetrische und ratiometrische Ausgänge mit fester Verstärkung
        1.       Isolierte Verstärker mit Differenzausgang
        2.       Isolierte Verstärker mit unsymmetrischem Ausgang mit fester Verstärkung
        3.       Trennverstärker mit unsymmetrischem, ratiometrischem Ausgang
      4.      Anwendungsbeispiele
        1.       Produktauswahlbaum
      5.      Zusammenfassung
      6.      Quellennachweise
    4.     Isolierte Spannungsmessschaltung mit ±250 mV-Eingang und Differenzausgang
      1.      93
    5.     Split-Tap-Verbindung für isolierte Line-to-Line-Spannungsmessung mit AMC3330
      1.      95
    6.     ±12 V-Spannungssensorschaltung mit isoliertem Verstärker und pseudo-differenziellem Eingang SAR-ADC
      1.      97
    7.     ±12 V-Spannungssensorschaltung mit isoliertem Verstärker und SAR-ADC mit Differenzeingang
      1.      99
    8.     Isolierter Schaltkreis zur Erkennung von Unter- und Überspannung
      1.      101
    9.     Isolierter Nulldurchgangsschaltkreis
      1.      103
    10.     Isolierter Spannungssensorschaltkreis mit ±480 V und Differenzausgang
      1.      105
  7.   EMI-Leistung
    1.     Beste EMI-Leistung in ihrer Klasse bei Strahlungsemissionen mit isolierten Verstärkern
      1.      Beste EMI-Leistung in ihrer Klasse bei Strahlungsemissionen mit isolierten Verstärkern
      2.      Einführung
      3.      Aktuelle Generation von isolierten Verstärkern von Texas Instruments Strahlungsemissionenleistung
      4.      Frühere Generationen von isolierten Verstärkern von Texas Instruments strahlen Störstrahlungsleistung aus
      5.      Fazit
      6.      Quellennachweise
    2.     Bewährte Methoden zur Dämpfung von EMI-Störstrahlungen der AMC3301-Familie
      1.      Kurzfassung
      2.      Einführung
      3.      Auswirkungen der Eingangsanschlüsse auf die Strahlungsemissionen der AMC3301-Familie
      4.      Dämpfung der Strahlungsemissionen der AMC3301-Familie
        1.       Ferritperlen und Gleichtaktdrosseln
        2.       Leiterplatten-Schaltpläne und bewährte Methoden für das Layout für die AMC3301-Familie
      5.      Verwendung mehrere AMC3301-Geräte
        1.       Bausteinausrichtung
        2.       Bewährte Methoden für das Leiterplatten-Layout für mehrere AMC3301
      6.      Fazit
      7.      Tabelle der AMC3301-Familie
  8.   Endgeräte
    1.     Vergleich von isolierten Shunt- und Hall-basierten Strommesslösungen in Hybrid- und Elektrofahrzeugen
      1.      128
    2.     Designüberlegungen für die Strommessung in DC-EV-Ladeanwendungen
      1.      Kurzfassung
      2.      Einführung
        1.       DC-Ladestation für Elektrofahrzeuge
        2.       Auswahl der Strommesstechnologie und äquivalentes Modell
          1.        Strommessung mit Shunt-basierter Lösung
          2.        Äquivalenzmodell der Sensortechnologie
      3.      Strommessung in AC/DC-Wandlern
        1.       Grundlegende Hardware und Steuerungsbeschreibung von AC/DC
          1.        AC Stromregelkreise
          2.        Gleichspannungsregelkreis
        2.       Punkt A und B – AC/DC AC-Phasenstrommessung
          1.        Auswirkungen der Bandbreite
            1.         Stationäre Zustandsanalyse: Grund- und Nulldurchgangs-Ströme
            2.         Transientenanalyse: Sprungleistung und Spannungseinbruchverhalten
          2.        Auswirkungen der Latenz
            1.         Fehleranalyse: Kurzschluss im Stromnetz
          3.        Auswirkungen des Verstärkungsfehlers
            1.         Spannungsstörung in AC/DC durch Verstärkungsfehler
            2.         AC/DC-Antwort auf durch Verstärkungsfehler verursachte Stromversorgungsstörung
          4.        Auswirkungen des Offset
        3.       Punkt C und D – AC/DC DC-Link-Strommessung
          1.        Auswirkungen der Bandbreite auf die Feed-Forward-Leistung
          2.        Auswirkungen der Latenz auf den Schutz der Leistungsschalter
          3.        Auswirkungen des Verstärkungsfehlers auf die Leistungsmessung
            1.         Transientenanalyse: Feed Forward in Punkt D
          4.        Auswirkungen des Offset
        4.       Zusammenfassung der positiven und negativen Punkte an den Punkten A, B, C1/2 und D1/2 sowie Produktvorschläge
      4.      Strommessung in DC/DC-Wandlern
        1.       Grundlegendes Funktionsprinzip eines isolierten DC/DC-Wandlers mit Phasenverschiebungssteuerung
        2.       Punkt E, F – DC/DC-Strommessung
          1.        Auswirkungen der Bandbreite
          2.        Auswirkungen des Verstärkungsfehlers
          3.        Auswirkung des Offsetfehlers
        3.       Punkt G – DC/DC-Tankstrommessung
        4.       Zusammenfassung der Sensorpunkte E, F, G und Produktvorschläge
      5.      Fazit
      6.      Quellennachweise
    3.     Verwendung isolierter Komparatoren zur Fehlererkennung in Elektromotorantrieben
      1.      Einführung
      2.      Einführung in Elektromotorantriebe
      3.      Verständnis von Fehlerereignissen in Elektromotorantrieben
      4.      Zuverlässige Erkennung und Schutz in Elektromotorantrieben
      5.      Anwendungsfall Nr. 1: Bidirektionale Phasenüberstromerkennung
      6.      Anwendungsfall Nr. 2: DC+-Überstromerkennung
      7.      Anwendungsfall Nr. 3: DC–Überstrom- oder Kurzschlusserkennung
      8.      Anwendungsfall Nr. 4: DC-Link (DC+ zu DC-) Überspannungs- und Unterspannungserkennung
      9.      Anwendungsfall Nr. 5: Übertemperaturerkennung des IGBT-Moduls
    4.     Diskrete DESAT für optokompatible isolierte Gate-Treiber UCC23513 in Motorantrieben
      1.      Kurzfassung
      2.      Einführung
      3.      Systemherausforderung bei isolierten Gate-Treibern mit integriertem DESAT
      4.      Systemansatz mit UCC23513 und AMC23C11
        1.       Systemübersicht und Schlüsselspezifikation
        2.       Schaltplandesign
          1.        Schaltplan
          2.        Konfigurieren des VCE(DESAT)-Schwellenwerts und des DESAT-Bias-Strom
          3.        DESAT-Ausblendzeit
          4.        DESAT Deglitch-Filter
        3.       Referenz-Platinenlayout
      5.      Simulations- und Testergebnisse
        1.       Simulationsschaltung und Ergebnisse
          1.        Simulationsschaltung
          2.        Simulationsergebnisse
        2.       Testergebnisse mit 3-Phasen-IGBT-Inverter
          1.        IGBT-Bremsprüfung
          2.        Testergebnisse mit einem 3-Phasen-Inverter mit Phase-zu-Phase-Kurzschluss
      6.      Zusammenfassung
      7.      Quellennachweise
    5.     Isolierte Spannungserfassung in AC-Motorantrieben
      1.      Einführung
      2.      Fazit
      3.      Quellennachweise
    6.     Hochleistungsfähige isolierte Strom- und Spannungsmessung in Server-Netzteilen
      1.      Anwendungshinweis
  9.   Zusätzliche Referenzdesigns/Schaltkreise
    1.     Entwicklung einer Bootstrap-Ladepumpen-Stromversorgung für einen isolierten Verstärker
      1.      Zusammenfassung
      2.      Einführung
      3.      Bootstrap StromversorgungenDesign
        1.       Auswahl des Ladungspumpenkondensators
        2.       Simulation in TINA-TI
        3.       Hardware-Test mit AMC1311-Q1
      4.      Zusammenfassung
      5.      Referenz
    2.     Taktflankenverzögerungskompensation mit isolierten Modulatoren Digitale Schnittstelle zu MCUs
      1.      Zusammenfassung
      2.      Einführung
      3.      Design-Herausforderung durch Timing-Spezifikationen für digitale Schnittstellen
      4.      Designansatz mit Taktflankenverzögerungskompensation
        1.       Taktsignalkompensation mit Softwarekonfigurierbarer Phasenverzögerung
        2.       Taktsignalkompensation mit Hardware-konfigurierbarer Phasenverzögerung
        3.       Taktsignalkompensation durch Taktrückkehr
        4.       Taktsignalkompensation durch Taktumkehr an der MCU
      5.      Test und Validierung
        1.       Prüfausrüstung und Software
        2.       Testen der Taktsignalkompensation mit softwarekonfigurierbarer Phasenverzögerung
          1.        Testeinrichtung
          2.        Test-Messergebnisse
        3.       Testen der Taktsignalkompensation durch Taktumkehr an der MCU
          1.        Testeinrichtung
          2.        Test-Messergebnisse
            1.         Testergebnis – Keine Taktumkehr des Takteingangs bei GPIO123
            2.         Testergebnis – Taktumkehr des Takteingangs bei GPIO123
        4.       Validierung des Timings digitaler Schnittstellen durch Berechnungstool
          1.        Digitale Schnittstelle ohne Kompensationsmethode
          2.        Häufig verwendete Methode – Reduzierung der Taktfrequenz
          3.        Taktflankenkompensation Mit Software-konfigurierbarer Phasenverzögerung
      6.      Fazit
      7.      Quellennachweise
    3.     Verwendung von AMC3311 zur Stromversorgung des AMC23C11 für isolierte Sensorik und Fehlererkennung
      1.      Anwendungshinweis

Anwendungshinweis

Die wachsende Nachfrage nach Cloud-basierter Technologie bei Internet-Content-Anbietern, Kommunikationsdienstleistern und vielen Konsumenten und Unternehmen führt zu einer starken Nachfrage nach Rechenzentren. Die Stromverteilungsnetzwerke in diesen Servern in Rechenzentren, von der Front-End-Leistungsfaktorkorrektur (PFC) bis hin zu den DC/DC-Stufen, sind erforderlich, um Standards mit hohem Wirkungsgrad und hoher Leistungsdichte zu erfüllen.

Ein Zertifizierungsstandard mit dem Namen 80 PLUS, der von Electric Power Research (EPRI) in Zusammenarbeit mit Ecos Consulting entwickelt wurde, fördert die effiziente Energienutzung in Server-Stromversorgungseinheiten (PSU) für Rechenzentren. Die Server-Netzteile können eine der vielen 80 Plus-Zertifizierungen wie Gold, Platin usw. erhalten, die auf der erreichbaren Energieeffizienz bei Nennlast und Leistungsfaktor (PF) basiert.

Verständnis der Anforderungen des Titanium-Standards

Die Anforderungen an den Wirkungsgrad, den Leistungsfaktor und die harmonische Gesamtverzerrung (iTHD) des 80 Plus Titanium-Standards sind in Tabelle 19, Tabelle 20bzw.Tabelle 21 dargestellt.

Tabelle 19 Anforderungen an den Wirkungsgrad des Titanstandards
115 V intern nicht redundant 230 V intern redundant 230 V EU-intern nicht redundant
Nennlast
10 % 20 % 50 % 100 % 10 % 20 % 50 % 100 % 10 % 20 % 50 % 100 %
Titan-Wirkungsgrad 90 % 92 % 94 % 90 % 90 % 94 % 96 % 91 % 90 % 94 % 96 % 94 %
Tabelle 20 80 Plus TitanStandard PF-Anforderungen
Ausgangsleistung 10 % 20 % 50 % 100 %
Leistungsfaktor > 0,90 > 0,96 > 0,98 > 0,99
Tabelle 21 80 Plus TitanStandard iTHD-Anforderungen
Ausgangsleistung > 5 % und ≤ 10 % > 10 % und < 20 % ≥ 20% ≥ 40% ≥ 50%
iTHD < 20 % < 15 % < 10 % ≤ 8% ≤ 5%

Hocheffiziente Server-PSU-Implementierung

Abbildung 134 eigt eine solche Implementierung einer Server-Stromversorgung mit PFC- und DC/DC-Stufen. Eine nicht isolierte PFC-Stufe stellt sicher, dass der gleichgerichtete Eingangsstrom der gleichgerichteten Eingangsspannung folgt. Diese Frontend-PFC-Stufe erzeugt einen Zwischenkreis mit einer relativ großen Welligkeit. Eine isolierte DC/DC-Stufe bietet dann eine galvanische Trennung und eine gut geregelte Ausgangsspannung mit minimaler Ausgangsstromwelligkeit.

 Implementierung einer Server-Stromversorgung mit PFC- und DC/DC-StufenAbbildung 134 Implementierung einer Server-Stromversorgung mit PFC- und DC/DC-Stufen

Der Leistungsfaktor für maximalen Wirkungsgrad sollte nahe an der Einheit liegen. Ein effizienter PFC wird durch eine brückenlose Einphasen-Totem-Pole-Topologie mit einer Spannungs- und einer Stromrückkopplungsschleife erreicht. Die Spannungsrückkopplungsschleife wird dazu verwendet, die PFC-Busspannung auf einen vorgewählten Wert zu regeln, und die Stromrückkopplungsschleife regelt den durchschnittlichen Gesamtstrom der Induktionsspule. Die Stromschleife erfordert eine hohe Messgenauigkeit und hohe Bandbreite, um die Anforderungen des Titanium-Standards an Wirkungsgrad, PF und iTHD zu erfüllen. Je nach Architektur und Standort der MCU muss der Rückkopplungspfad der Strom- und Spannungsmessung möglicherweise isoliert werden.

Isolierte Hochleistungs-Strom- und -Spannungsmessung in Server-Netzteilen

Shunt-basierte Strommessungen sind die bevorzugte Option, um die hohe Genauigkeit und Bandbreite der Stromrückkopplungsschleife zu erreichen. Shunt-basierte Lösungen bieten höhere Genauigkeit, geringere Temperaturdrift und höhere Bandbreite als Hall-basierte Stromsensoren mit offenem Regelkreis. Hall-Sensormodule mit geschlossenem Regelkreis könnten eine Alternative darstellen, aber sie sind im Vergleich zu Shunt-basierten Lösungen sehr teuer, um die erforderliche Leistung zu erreichen.

Shunt-Widerstände in Kombination mit verstärkten isolierten Verstärkern wie dem AMC3301 (±250 mV-Eingangsbereich) oder AMC3302 (±50 mV-Eingangsbereich), die mit einer einzigen Stromversorgung arbeiten können und eine Bandbreite von bis zu 300 kHz bieten, stellen eine einfache und einfach zu implementierende Lösung für genaue Shunt-basierte isolierte Strommessung dar. Diese Produkte enthalten einen vollständig integrierten DC/DC-Wandler, der eine Stromversorgung auf der Strommessseite überflüssig macht. Für Spannungsmessungen ermöglicht ein Widerstandsteilernetzwerk mit nachgefolgten verstärkten isolierten Verstärkern wie AMC3330 (±1 V-Eingangsbereich) eine sehr genaue isolierte Spannungsmessung. Abbildung 135 und Abbildung 136 zeigen die Blockschaltbilder von AMC3301 bzw. AMC3330.

 AMC3301 BlockschaltbildAbbildung 135 AMC3301 Blockschaltbild
 AMC3330 BlockschaltbildAbbildung 136 AMC3330 Blockschaltbild

Fazit

Mit dem Trend der Hersteller von Servernetzteilen, die die Zertifizierung nach dem Titanium-Standard erreichen wollen, bietet die Produktfamilie AMC33xx eine leistungsstarke, kostenoptimierte und einfach zu implementierende Lösung für die isolierte Strom- und Spannungsmessung.