GERY022 December   2024 AMC0106M05 , AMC0106M25 , AMC0136 , AMC0311D , AMC0311S , AMC0386 , AMC0386-Q1 , AMC1100 , AMC1106M05 , AMC1200 , AMC1200-Q1 , AMC1202 , AMC1203 , AMC1204 , AMC1211-Q1 , AMC1300 , AMC1300B-Q1 , AMC1301 , AMC1301-Q1 , AMC1302-Q1 , AMC1303M2510 , AMC1304L25 , AMC1304M25 , AMC1305M25 , AMC1305M25-Q1 , AMC1306M05 , AMC1306M25 , AMC1311 , AMC1311-Q1 , AMC131M03 , AMC1336 , AMC1336-Q1 , AMC1350 , AMC1350-Q1 , AMC23C12 , AMC3301 , AMC3330 , AMC3330-Q1

 

  1.   1
  2.   Einführung
  3.   Einführung in die isolierte Signalkette
    1.     Vergleich isolierter Verstärker und isolierter Modulatoren
      1.      Kurzfassung
      2.      Einführung in isolierte Verstärker
      3.      Einführung in isolierte Modulatoren
      4.      Leistungsvergleich zwischen isolierten Verstärkern und isolierten Modulatoren
      5.      Isolierte Modulatoren in Traktionsumrichtern
      6.      Isolierte Verstärker und Modulatoren, Empfehlungen
      7.      Fazit
    2.     Die ersten Isolationsverstärker von TI mit extrem breiten Luft- und Kriechstrecken
      1.      Anwendungshinweis
  4.   Auswahlbäume
  5.   Strommessung
    1.     Shunt-Widerstandsauswahl für isolierte Datenwandler
      1.      17
    2.     Designüberlegungen für die isolierte Strommessung
      1.      19
      2.      Fazit
      3.      Quellennachweise
      4.      Verwandte Websites
    3.     Isolierte Strommessschaltung mit ±50 mV-Eingang und unsymmetrischem Ausgang
      1.      24
    4.     Isolierte Strommessschaltung mit ±50 mV-Eingang und Differenzausgang
      1.      26
    5.     Isolierte Strommessschaltung mit ±250 mV Eingangsbereich und unsymmetrischer Ausgangsspannung
      1.      Designziele
      2.      Designbeschreibung
      3.      Designhinweise
      4.      Designschritte
      5.      Design-Simulationen
      6.      DC-Simulationsergebnisse
      7.      Ergebnisse der AC-Simulation im geschlossenen Regelkreis
      8.      Ergebnisse der Transienten-Simulation
      9.      Designreferenzen
      10.      Design empfohlener isolierter Verstärker
      11.      Design Alternativer Isolierter Verstärker
    6.     Isolierter Strommessschaltkreis mit ±250 mV-Eingang und Differenzausgang
      1.      Designziele
      2.      Designbeschreibung
      3.      Designhinweise
      4.      Designschritte
      5.      Design-Simulationen
      6.      DC-Simulationsergebnisse
      7.      Ergebnisse der Closed-Loop-AC-Simulation
      8.      Ergebnisse der Transienten-Simulation
      9.      Designreferenzen
      10.      Vorgestellte Operationsverstärker
      11.      Design alternativer Operationsverstärker
    7.     Isolierter Überstromschutzschaltkreis
      1.      52
    8.     Anschluss eines Differenzialausgangsverstärkers (isoliert) an einen A/D-Wandler mit unsymmetrischem Eingang
      1.      54
    9.     Verwendung von AMC3311 zur Stromversorgung des AMC23C11 für isolierte Sensorik und Fehlererkennung
      1.      Anwendungshinweis
    10.     Isolierte Strommessschaltung mit Frontend-Verstärkungsstufe
      1.      58
    11.     Genauigkeitsvergleich von isolierten Shunt- und Geschlossener Regelkreis-Strommessungen
      1.      60
  6.   Spannungserfassung
    1.     Maximieren Sie die Leistungswandlung und die Wirksamkeit der Motorsteuerung durch isolierte Spannungserfassung
      1.      63
      2.      Lösungen zur Hochspannungserfassung
      3.      Integrierte Widerstandsbausteine
      4.      Unsymmetrische Ausgangsspannung
      5.      Anwendungsfälle für integrierte isolierte Spannungserkennung
      6.      Fazit
      7.      Weitere Ressourcen
    2.     Höhere Genauigkeit und Leistung mit integrierten isolierten Verstärkern und Modulatoren mit Hochspannungswiderstand
      1.      Kurzfassung
      2.      Einführung
      3.      Vorteile von isolierten Verstärkern und Modulatoren mit Hochspannungswiderstand
        1.       Platzsparend
        2.       Verbesserte Temperatur- und Lebensdauerdrift von integrierten HV-Widerständen
        3.       Ergebnisse mit hoher Genauigkeit
        4.       Beispiel für vollständig integrierte Widerstände vs. Zusätzlicher externer Widerstand
        5.       Bausteinauswahlbaum und gängige AC/DC-Anwendungsfälle
      4.      Zusammenfassung
      5.      Quellennachweise
    3.     Isolierte Verstärker mit differenziellen, unsymmetrischen Festverstärkern und ratiometrischen Ausgängen für Spannungssensoranwendungen
      1.      Kurzfassung
      2.      Einführung
      3.      Übersicht über differenzielle, unsymmetrische und ratiometrische Ausgänge mit fester Verstärkung
        1.       Isolierte Verstärker mit Differenzausgang
        2.       Isolierte Verstärker mit unsymmetrischem Ausgang mit fester Verstärkung
        3.       Trennverstärker mit unsymmetrischem, ratiometrischem Ausgang
      4.      Anwendungsbeispiele
        1.       Produktauswahlbaum
      5.      Zusammenfassung
      6.      Quellennachweise
    4.     Isolierte Spannungsmessschaltung mit ±250 mV-Eingang und Differenzausgang
      1.      93
    5.     Split-Tap-Verbindung für isolierte Line-to-Line-Spannungsmessung mit AMC3330
      1.      95
    6.     ±12 V-Spannungssensorschaltung mit isoliertem Verstärker und pseudo-differenziellem Eingang SAR-ADC
      1.      97
    7.     ±12 V-Spannungssensorschaltung mit isoliertem Verstärker und SAR-ADC mit Differenzeingang
      1.      99
    8.     Isolierter Schaltkreis zur Erkennung von Unter- und Überspannung
      1.      101
    9.     Isolierter Nulldurchgangsschaltkreis
      1.      103
    10.     Isolierter Spannungssensorschaltkreis mit ±480 V und Differenzausgang
      1.      105
  7.   EMI-Leistung
    1.     Beste EMI-Leistung in ihrer Klasse bei Strahlungsemissionen mit isolierten Verstärkern
      1.      Beste EMI-Leistung in ihrer Klasse bei Strahlungsemissionen mit isolierten Verstärkern
      2.      Einführung
      3.      Aktuelle Generation von isolierten Verstärkern von Texas Instruments Strahlungsemissionenleistung
      4.      Frühere Generationen von isolierten Verstärkern von Texas Instruments strahlen Störstrahlungsleistung aus
      5.      Fazit
      6.      Quellennachweise
    2.     Bewährte Methoden zur Dämpfung von EMI-Störstrahlungen der AMC3301-Familie
      1.      Kurzfassung
      2.      Einführung
      3.      Auswirkungen der Eingangsanschlüsse auf die Strahlungsemissionen der AMC3301-Familie
      4.      Dämpfung der Strahlungsemissionen der AMC3301-Familie
        1.       Ferritperlen und Gleichtaktdrosseln
        2.       Leiterplatten-Schaltpläne und bewährte Methoden für das Layout für die AMC3301-Familie
      5.      Verwendung mehrere AMC3301-Geräte
        1.       Bausteinausrichtung
        2.       Bewährte Methoden für das Leiterplatten-Layout für mehrere AMC3301
      6.      Fazit
      7.      Tabelle der AMC3301-Familie
  8.   Endgeräte
    1.     Vergleich von isolierten Shunt- und Hall-basierten Strommesslösungen in Hybrid- und Elektrofahrzeugen
      1.      128
    2.     Designüberlegungen für die Strommessung in DC-EV-Ladeanwendungen
      1.      Kurzfassung
      2.      Einführung
        1.       DC-Ladestation für Elektrofahrzeuge
        2.       Auswahl der Strommesstechnologie und äquivalentes Modell
          1.        Strommessung mit Shunt-basierter Lösung
          2.        Äquivalenzmodell der Sensortechnologie
      3.      Strommessung in AC/DC-Wandlern
        1.       Grundlegende Hardware und Steuerungsbeschreibung von AC/DC
          1.        AC Stromregelkreise
          2.        Gleichspannungsregelkreis
        2.       Punkt A und B – AC/DC AC-Phasenstrommessung
          1.        Auswirkungen der Bandbreite
            1.         Stationäre Zustandsanalyse: Grund- und Nulldurchgangs-Ströme
            2.         Transientenanalyse: Sprungleistung und Spannungseinbruchverhalten
          2.        Auswirkungen der Latenz
            1.         Fehleranalyse: Kurzschluss im Stromnetz
          3.        Auswirkungen des Verstärkungsfehlers
            1.         Spannungsstörung in AC/DC durch Verstärkungsfehler
            2.         AC/DC-Antwort auf durch Verstärkungsfehler verursachte Stromversorgungsstörung
          4.        Auswirkungen des Offset
        3.       Punkt C und D – AC/DC DC-Link-Strommessung
          1.        Auswirkungen der Bandbreite auf die Feed-Forward-Leistung
          2.        Auswirkungen der Latenz auf den Schutz der Leistungsschalter
          3.        Auswirkungen des Verstärkungsfehlers auf die Leistungsmessung
            1.         Transientenanalyse: Feed Forward in Punkt D
          4.        Auswirkungen des Offset
        4.       Zusammenfassung der positiven und negativen Punkte an den Punkten A, B, C1/2 und D1/2 sowie Produktvorschläge
      4.      Strommessung in DC/DC-Wandlern
        1.       Grundlegendes Funktionsprinzip eines isolierten DC/DC-Wandlers mit Phasenverschiebungssteuerung
        2.       Punkt E, F – DC/DC-Strommessung
          1.        Auswirkungen der Bandbreite
          2.        Auswirkungen des Verstärkungsfehlers
          3.        Auswirkung des Offsetfehlers
        3.       Punkt G – DC/DC-Tankstrommessung
        4.       Zusammenfassung der Sensorpunkte E, F, G und Produktvorschläge
      5.      Fazit
      6.      Quellennachweise
    3.     Verwendung isolierter Komparatoren zur Fehlererkennung in Elektromotorantrieben
      1.      Einführung
      2.      Einführung in Elektromotorantriebe
      3.      Verständnis von Fehlerereignissen in Elektromotorantrieben
      4.      Zuverlässige Erkennung und Schutz in Elektromotorantrieben
      5.      Anwendungsfall Nr. 1: Bidirektionale Phasenüberstromerkennung
      6.      Anwendungsfall Nr. 2: DC+-Überstromerkennung
      7.      Anwendungsfall Nr. 3: DC–Überstrom- oder Kurzschlusserkennung
      8.      Anwendungsfall Nr. 4: DC-Link (DC+ zu DC-) Überspannungs- und Unterspannungserkennung
      9.      Anwendungsfall Nr. 5: Übertemperaturerkennung des IGBT-Moduls
    4.     Diskrete DESAT für optokompatible isolierte Gate-Treiber UCC23513 in Motorantrieben
      1.      Kurzfassung
      2.      Einführung
      3.      Systemherausforderung bei isolierten Gate-Treibern mit integriertem DESAT
      4.      Systemansatz mit UCC23513 und AMC23C11
        1.       Systemübersicht und Schlüsselspezifikation
        2.       Schaltplandesign
          1.        Schaltplan
          2.        Konfigurieren des VCE(DESAT)-Schwellenwerts und des DESAT-Bias-Strom
          3.        DESAT-Ausblendzeit
          4.        DESAT Deglitch-Filter
        3.       Referenz-Platinenlayout
      5.      Simulations- und Testergebnisse
        1.       Simulationsschaltung und Ergebnisse
          1.        Simulationsschaltung
          2.        Simulationsergebnisse
        2.       Testergebnisse mit 3-Phasen-IGBT-Inverter
          1.        IGBT-Bremsprüfung
          2.        Testergebnisse mit einem 3-Phasen-Inverter mit Phase-zu-Phase-Kurzschluss
      6.      Zusammenfassung
      7.      Quellennachweise
    5.     Isolierte Spannungserfassung in AC-Motorantrieben
      1.      Einführung
      2.      Fazit
      3.      Quellennachweise
    6.     Hochleistungsfähige isolierte Strom- und Spannungsmessung in Server-Netzteilen
      1.      Anwendungshinweis
  9.   Zusätzliche Referenzdesigns/Schaltkreise
    1.     Entwicklung einer Bootstrap-Ladepumpen-Stromversorgung für einen isolierten Verstärker
      1.      Zusammenfassung
      2.      Einführung
      3.      Bootstrap StromversorgungenDesign
        1.       Auswahl des Ladungspumpenkondensators
        2.       Simulation in TINA-TI
        3.       Hardware-Test mit AMC1311-Q1
      4.      Zusammenfassung
      5.      Referenz
    2.     Taktflankenverzögerungskompensation mit isolierten Modulatoren Digitale Schnittstelle zu MCUs
      1.      Zusammenfassung
      2.      Einführung
      3.      Design-Herausforderung durch Timing-Spezifikationen für digitale Schnittstellen
      4.      Designansatz mit Taktflankenverzögerungskompensation
        1.       Taktsignalkompensation mit Softwarekonfigurierbarer Phasenverzögerung
        2.       Taktsignalkompensation mit Hardware-konfigurierbarer Phasenverzögerung
        3.       Taktsignalkompensation durch Taktrückkehr
        4.       Taktsignalkompensation durch Taktumkehr an der MCU
      5.      Test und Validierung
        1.       Prüfausrüstung und Software
        2.       Testen der Taktsignalkompensation mit softwarekonfigurierbarer Phasenverzögerung
          1.        Testeinrichtung
          2.        Test-Messergebnisse
        3.       Testen der Taktsignalkompensation durch Taktumkehr an der MCU
          1.        Testeinrichtung
          2.        Test-Messergebnisse
            1.         Testergebnis – Keine Taktumkehr des Takteingangs bei GPIO123
            2.         Testergebnis – Taktumkehr des Takteingangs bei GPIO123
        4.       Validierung des Timings digitaler Schnittstellen durch Berechnungstool
          1.        Digitale Schnittstelle ohne Kompensationsmethode
          2.        Häufig verwendete Methode – Reduzierung der Taktfrequenz
          3.        Taktflankenkompensation Mit Software-konfigurierbarer Phasenverzögerung
      6.      Fazit
      7.      Quellennachweise
    3.     Verwendung von AMC3311 zur Stromversorgung des AMC23C11 für isolierte Sensorik und Fehlererkennung
      1.      Anwendungshinweis

Einführung

Isolierte Delta-Sigma-Modulatoren werden häufig für die Shunt-basierte Phasenstrommessung in Servoantrieben und Robotik-Anwendungen verwendet , da eine genaue und latenzarme isolierte Phasenstrommessung einen erheblichen Einfluss auf die Leistung von Dreiphasen-Invertern hat. Delta-Sigma-Modulatoren stellen einen digitalen Bitstrom mit LVDS- oder CMOS-Schnittstelle zu einer MCU bereit. Dies ermöglicht die Messung des Phasenstroms mit außergewöhnlicher Rauschunempfindlichkeit, hoher Präzision und kurzer Latenzzeit. Weitere Informationen zu isolierten Modulatoren finden Sie im Anwendungshinweis Vergleich isolierter Verstärker und isolierter Modulatoren.

Häufig werden die Shunts und die isolierten Delta-Sigma-Modulatoren auf der Leistungsstufen-Leiterplatte (PCB) platziert, während die MCU auf einer separaten Steuerplatinen-Leiterplatte (siehe Abbildung 1) platziert wird. Richtige Routing-Schemata auf den Leiterplatten und dem Schnittstellenanschluss sind für die Integrität des digitalen Signals von entscheidender Bedeutung. Bewährte Methoden für Takt- und Datenleitungsrouting und -Terminierung werden im Anwendungsbericht Bessere Signalintegrität mit isoliertem Delta-Sig. Modulatoren in Motorantrieben (ti.com) erläutert.

 Vereinfachtes 3-Phasen-Inverter-Blockschaltbild mit digitaler Schnittstelle von MCU zu Isolator-ModulatorenAbbildung 144 Vereinfachtes 3-Phasen-Inverter-Blockschaltbild mit digitaler Schnittstelle von MCU zu Isolator-Modulatoren

Beim Timing zwischen der Taktflanke des Modulators und dem digitalen Bitstrom kann es zu weiteren Designherausforderungen kommen, insbesondere wenn die Signalspuren ziemlich lang sind, werden zusätzliche Puffer und Pegelumsetzer verwendet. Dann kann eine zusätzliche Ausbreitungsverzögerung des Modulatortakts und des Bitstream-Signals sogar dazu führen, dass Entwickler den Modulatortakt von maximal 21 MHz (AMC1306) auf z. B. 15 MHz reduzieren müssen, um das Timing zwischen Taktbereich und Bitstream-Daten an der MCU zu erfüllen. Dadurch erhöht sich die Latenzzeit der gesamten Phasenstrommessung umgekehrt proportional zum ausgewählten Modulatortakt. Ein typischerweise verwendeter Sinc3-Dezimationsfilter mit einem Oversampling-Verhältnis von 64 hat beispielsweise eine Messlatenz (Ausbreitungsverzögerung) von 4,8 us bei einem 20-MHz-Modulatortakt, während die Latenz auf 6,4 us steigt, wenn nur ein 15-MHz-Modulatortakt verwendet werden kann.

Die folgenden Abschnitte dieses Dokuments geben einen Überblick über die digitalen Timing-Kompensationsmethoden zur Überwindung dieser Designherausforderung. Sie zeigen, dass das entwickeln mit einem isolierten Modulator nicht nur die höchste Messgenauigkeit bietet, sondern auch die einfachste.