SLVSIM8A June   2025  – December 2025 DRV8363-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Functions 48-Pin DRV8363-Q1
  6. Specification
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 Recommended Operating Conditions
    3. 5.3 Thermal Information 1pkg
    4. 5.4 Electrical Characteristics
    5. 5.5 SPI Timing Requirements
    6. 5.6 SPI Timing Diagrams
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Three BLDC Gate Drivers
        1. 6.3.1.1 PWM Control Modes
          1. 6.3.1.1.1 6x PWM Mode
          2. 6.3.1.1.2 3x PWM Mode with INLx enable control
          3. 6.3.1.1.3 1x PWM Mode
        2. 6.3.1.2 Gate Drive Architecture
          1. 6.3.1.2.1 Bootstrap diode
          2. 6.3.1.2.2 VCP Trickle Charge pump
          3. 6.3.1.2.3 Gate Driver Output
          4. 6.3.1.2.4 Passive and Semi-active pull-down resistor
          5. 6.3.1.2.5 TDRIVE/IDRIVE Gate Drive Timing Control
          6. 6.3.1.2.6 Propagation Delay
          7. 6.3.1.2.7 Deadtime and Cross-Conduction Prevention
      2. 6.3.2 DVDD Linear Voltage Regulator
      3. 6.3.3 Low-Side Current Sense Amplifiers
        1. 6.3.3.1 Unidirectional Current Sense Operation
        2. 6.3.3.2 Bidirectional Current Sense Operation
      4. 6.3.4 Gate Driver Shutdown
        1. 6.3.4.1 DRVOFF Gate Driver Shutdown
        2. 6.3.4.2 Soft Shutdown Timing Sequence
      5. 6.3.5 Active Short Circuit
      6. 6.3.6 Gate Driver Protective Circuits
        1. 6.3.6.1  GVDD Undervoltage Lockout (GVDD_UV)
        2. 6.3.6.2  GVDD Overvoltage Fault (GVDD_OV)
        3. 6.3.6.3  VDRAIN Undervoltage Fault (VDRAIN_UV)
        4. 6.3.6.4  VDRAIN Overvoltage Fault (VDRAIN_OV)
        5. 6.3.6.5  VCP Undervoltage Fault (CP_OV)
        6. 6.3.6.6  BST Undervoltage Lockout (BST_UV)
        7. 6.3.6.7  MOSFET VDS Overcurrent Protection (VDS_OCP)
        8. 6.3.6.8  MOSFET VGS Monitoring Protection
        9. 6.3.6.9  Shunt Overcurrent Protection (SNS_OCP)
        10. 6.3.6.10 Thermal Shutdown (OTSD)
        11. 6.3.6.11 Thermal Warning (OTW)
        12. 6.3.6.12 OTP CRC
        13. 6.3.6.13 SPI Watchdog Timer
        14. 6.3.6.14 Phase Diagnostic
    4. 6.4 Fault Detection and Response Summary Table (Fault Table)
    5. 6.5 Device Functional Modes
      1. 6.5.1 Gate Driver Functional Modes
        1. 6.5.1.1 Sleep Mode
        2. 6.5.1.2 Standby Mode
        3. 6.5.1.3 Active Mode
    6. 6.6 Programming
      1. 6.6.1 SPI
      2. 6.6.2 SPI Format
      3. 6.6.3 SPI Format Diagrams
    7. 6.7 Register Maps
      1. 6.7.1 STATUS Registers
      2. 6.7.2 CONTROL Registers
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Typical Application with 48-pin package
        1. 7.2.1.1 External Components
      2. 7.2.2 Application Curves
    3. 7.3 Layout
      1. 7.3.1 Layout Guidelines
  9. Device and Documentation Support
    1. 8.1 Documentation Support
      1. 8.1.1 Related Documentation
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information
    1.     PACKAGE OPTION ADDENDUM
    2. 10.1 Tape and Reel Information
VCP Trickle Charge pump

The device has charge pump that provides current to CBST bootstrap capacitor so that the bootstrap capacitor stays charged. This allows the gate driver to operate at 100% duty cycle. The charge pump also supports pre-charge of CBST capacitor at power up.

By default, the trickle charge pump to bootstrap connection is configured in "high duty cycle" mode. When TCP_HD_DIS = 0, the VCP-BSTx pull-up is activated as soon as INHx goes high, at the strength defined by TCP_HD_SW_CURLIM. This can help maintain the BSTx voltage during high duty cycle transients where the BSTx capacitor cannot fully recharge through the bootstrap diode due to limited low-side on time.

If TCP_HD_DIS = 1, then the VCP-BSTx pull-up will be in "normal mode," where the pull-up will wait for TCP_SW_DLY to expire after the rising edge of INHx before enabling the pullup at strength defined by TCP_SW_CURLIM. This mode will reduce load on the trickle charge pump for reduced power dissipation, and can help avoid accidentally overloading the trickle charge pump leading to a VCP undervoltage.

In addition to the support of 100% PWM duty cycle operation, the VCP charge pump is designed to support an overdrive supply for external components. The supply voltage VVCP is available on VCP pin and the voltage is regulated with respect to VDRAIN, where a capacitor is connected between VCP and VDRAIN pins. The VCP voltage can be used for an overdrive supply of external switch control circuits such as battery reverse protection switch, high-side switch, or motor phase isolation switches. While the VCP charge pump is designed to support these external loads, care must be taken to avoid exceeding the total current limit of the overdrive supply.