SNVSCB5B March   2022  – May 2025 TPS388R0-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 I2C
      2. 7.3.2 Auto Mask (AMSK)
      3. 7.3.3 PEC
      4. 7.3.4 VDD
      5. 7.3.5 MON
      6. 7.3.6 NIRQ
      7. 7.3.7 NRST
    4. 7.4 Device Functional Modes
      1. 7.4.1 Built-In Self Test and Configuration Load
        1. 7.4.1.1 Notes on BIST Execution
      2. 7.4.2 TPS38800-Q1 Power ON
      3. 7.4.3 General Monitoring
        1. 7.4.3.1 IDLE Monitoring
        2. 7.4.3.2 ACTIVE Monitoring
        3. 7.4.3.3 Sequence Monitoring 1
          1. 7.4.3.3.1 ACT Transitions 0→1
          2. 7.4.3.3.2 SLEEP Transition 1→0
          3. 7.4.3.3.3 SLEEP Transition 0→1
        4. 7.4.3.4 Sequence Monitoring 2
          1. 7.4.3.4.1 ACT Transition 1→0
    5. 7.5 Register Maps
      1. 7.5.1 Registers Overview
        1. 7.5.1.1 BANK0 Registers
        2. 7.5.1.2 BANK1 Registers
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Multichannel Sequencer and Monitor
      2. 8.2.2 Design Requirements
      3. 8.2.3 Detailed Design Procedure
      4. 8.2.4 Application Curves
    3. 8.3 Power Supply Recommendations
      1. 8.3.1 Power Supply Guidelines
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Nomenclature
    2. 9.2 Documentation Support
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

NIRQ

In a typical TPS38800-Q1/TPS388R0-Q1 application, the NIRQ output is connected to a reset or enable input of a processor [such as a digital signal processor (DSP), application-specific integrated circuit (ASIC), or other processor type] or the enable input of a voltage regulator [such as a DC-DC converter or low-dropout regulator (LDO)].NIRQ is a interrupt error ouput with latched behavior, if a monitored voltage falls or rises outside of the programmed OVHF and UVHF thresholds NIRQ is asserted. NIRQ remains in a low state until the action causing the fault is no longer present and a 1-to-clear is written to the bit signaling the fault. Un-mapping NIRQ from a fault reporting register does not de-assert the NIRQ signal

The TPS38800-Q1/TPS388R0-Q1 has an open drain active low output that requires a pull-up resistor to hold these lines high to the required voltage logic. Connect the pull-up resistor to the proper voltage rail to enable the output to be connected to other devices at the correct interface voltage levels. To maintain proper voltage levels, give some consideration when choosing the pull-up resistor values. The pull-up resistor value is determined by VOL, output capacitive loading, and output leakage current. These values are specified in Section 6. The open drain output can be connected as a wired-OR logic with other open drain signals such as another TPS38800-Q1/TPS388R0-Q1 NIRQ pin.