SPRACM9B June   2019  – November 2020 TMS320F28384D , TMS320F28384S , TMS320F28386D , TMS320F28386S , TMS320F28388D , TMS320F28388S , TMS320F28P650DH , TMS320F28P650DK , TMS320F28P650SH , TMS320F28P650SK , TMS320F28P659DK-Q1

 

  1.   Trademarks
  2. Introduction
    1. 1.1 Acronyms Used in This Document
  3. Benefits of the TMS320F2838x MCU for High-Bandwidth Current Loop
  4. Current Loops in Servo Drives
  5. Outline of the Fast Current Loop Library
  6. Fast Current Loop Evaluation
    1. 5.1 Evaluation Setup
      1. 5.1.1 Hardware
      2. 5.1.2 Software
      3. 5.1.3 FCL With T-Format Type Position Encoder
        1. 5.1.3.1 Connecting T-Format Encoder to IDDK
        2. 5.1.3.2 T-Format Interface Software
        3. 5.1.3.3 T-Format Encoder Latency Considerations
      4. 5.1.4 SDFM
      5. 5.1.5 Incremental System Build
  7. Incremental Build Level 1
    1. 6.1 SVGEN Test
    2. 6.2 Testing SVGEN With DACs
    3. 6.3 Inverter Functionality Verification
  8. Incremental Build Level 2
    1. 7.1 Setting the Overcurrent Limit in the Software
    2. 7.2 Current Sense Method
    3. 7.3 Voltage Sense Method
    4. 7.4 Setting Current Regulator Limits
    5. 7.5 Verification of Current Sense
    6. 7.6 Position Encoder Feedback
      1. 7.6.1 Speed Observer and Position Estimator
      2. 7.6.2 Verification of Position Encoder Orientation
  9. Incremental Build Level 3
    1. 8.1 Observation One – PWM Update Latency
      1. 8.1.1 From the Expressions Window
      2. 8.1.2 From the Scope Plot
  10. Incremental Build Level 4
    1. 9.1 Observation
  11. 10Incremental Build Level 5
  12. 11Incremental Build Level 6
    1. 11.1 Integrating SFRA Library
    2. 11.2 Initial Setup Before Starting SFRA
    3. 11.3 SFRA GUIs
    4. 11.4 Setting Up the GUIs to Connect to Target Platform
    5. 11.5 Running the SFRA GUIs
    6. 11.6 Influence of Current Feedback SNR
    7. 11.7 Inferences
      1. 11.7.1 Bandwidth Determination From Closed Loop Plot
      2. 11.7.2 Phase Margin Determination From Open Loop Plot
      3. 11.7.3 Maximum Modulation Index Determination From PWM Update Time
      4. 11.7.4 Voltage Decoupling in Current Loop
    8. 11.8 Phase Margin vs Gain Crossover Frequency
  13. 12Incremental Build Level 7
    1. 12.1 Run the Code on CPU1 to Allocate ECAT to CM
    2. 12.2 Run the Code on CM to Setup ECAT
    3. 12.3 Setup TwinCAT
    4. 12.4 Scanning for EtherCAT Devices via TwinCAT
    5. 12.5 Program ControlCard EEPROM for ESC
    6. 12.6 Running the Application
  14. 13Incremental Build Level 8
    1. 13.1 Run the Code on CPU1 to Allocate ECAT to CM
    2. 13.2 Run the Code on CM to Setup ECAT
    3. 13.3 Running the Application
  15. 14References
  16. 15Revision History

Bandwidth Determination From Closed Loop Plot

The controller implemented for the open loop and closed loop plots shown in Figure 11-8 and Figure 11-9 is a dead beat controller where the output catches up to the input in just one sample cycle without any overshoots or requiring multiple cycles. From the closed loop plot, it is clear that the closed loop gain is always 0dB (unity gain) at all frequencies and therefore, magnitude based bandwidth determination is not practical. Hence, the phase plot is chosen as reference, and the frequency at which the phase lag goes beyond 90° is taken as bandwidth per the Chinese standard GBT 16439-2009 or NEMA ICS 16 (speed loop). In this test case, the PWM frequency is chosen as 10 KHz and the sampling frequency is 20 KHz and the current loop bandwidth obtained from the closed loop plot is about 5000Hz per these guidelines.