TIDUFA5 December   2024

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 Small Compact Size
      2. 2.2.2 Transformerless Design
    3. 2.3 Highlighted Products
      1. 2.3.1  BQ25790 IIC Controlled, 1–4 Cell, 5A Buck-Boost Battery Charger
      2. 2.3.2  TPS3422 Low-Power, Push-Button Controllers With Configurable Delay
      3. 2.3.3  SN74LVC1G74 Single Positive-Edge-Triggered D-Type Flip-Flop With Clear and Preset
      4. 2.3.4  TPS259470 2.7V–23V, 5.5A, 28mΩ True Reverse Current Blocking eFuse
      5. 2.3.5  TPS54218 2.95V to 6V Input, 2A Synchronous Step-Down SWIFT Converter
      6. 2.3.6  TPS54318 2.95V to 6V Input, 3A Synchronous Step-Down SWIFT Converter
      7. 2.3.7  LM5158 2.2MHz, Wide VIN, 85V Output Boost, SEPIC, or Flyback Converter
      8. 2.3.8  TPS61178 20V Fully Integrated Sync Boost With Load Disconnect
      9. 2.3.9  LMZM23601 36V, 1A Step-Down DC-DC Power Module in 3.8mm × 3mm Package
      10. 2.3.10 TPS7A39 Dual, 150mA, Wide-VIN, Positive and Negative Low-Dropout (LDO) Voltage Regulator
      11. 2.3.11 TPS74401 3.0A, Ultra-LDO With Programmable Soft Start
      12. 2.3.12 TPS7A96 2A, Ultra-Low Noise, Ultra-high PSRR RF Voltage Regulator
      13. 2.3.13 LM3880 3-Rail Simple Power Sequencer With Fixed Time Delay
      14. 2.3.14 DAC53401 10-Bit, Voltage-Output DAC With Nonvolatile Memory
      15. 2.3.15 INA231 28V, 16-bit, I2C Output Current, Voltage, and Power Monitor With Alert in WCSP
  9. 3System Design Theory
    1. 3.1 Input Section
      1. 3.1.1 Buck-Boost Charger
      2. 3.1.2 Power On or Off
    2. 3.2 Designing SEPIC and Cuk Based High-Voltage Power Supply
      1. 3.2.1 Basic Operation Principle of SEPIC and Cuk Converters
      2. 3.2.2 Dual High-Voltage Power Supply Design Using Uncoupled Inductors With SEPIC and Cuk
        1. 3.2.2.1 Duty Cycle
        2. 3.2.2.2 Inductor Selection
        3. 3.2.2.3 Power MOSFET Verification
        4. 3.2.2.4 Output Diode Selection
        5. 3.2.2.5 Coupling Capacitor Selection
        6. 3.2.2.6 Output Capacitor Selection
        7. 3.2.2.7 Input Capacitor Selection
        8. 3.2.2.8 Programming the Output Voltage With Adjustable function
    3. 3.3 Designing the Low-Voltage Power Supply
      1. 3.3.1 Designing the TPS54218 Through WEBENCH Power Designer
      2. 3.3.2 ±5V Transmit Supply Generation
    4. 3.4 System Clock Synchronization
    5. 3.5 Power and Data Output Connector
    6. 3.6 System Current and Power Monitoring
  10. 4Hardware, Testing Requirements, and Test Results
    1. 4.1 Hardware Requirements
    2. 4.2 Test Setup
    3. 4.3 Test Results
      1. 4.3.1 Efficiency Test Result
      2. 4.3.2 Line Regulation Testing Result
      3. 4.3.3 Spectrum Test Result
  11. 5Design and Documentation Support
    1. 5.1 Design Files
      1. 5.1.1 Schematics
      2. 5.1.2 BOM
      3. 5.1.3 PCB Layout Recommendations
        1. 5.1.3.1 High-Voltage Supply Layout
    2. 5.2 Tools and Software
    3. 5.3 Documentation Support
    4. 5.4 Support Resources
    5. 5.5 Trademarks

SN74LVC1G74 Single Positive-Edge-Triggered D-Type Flip-Flop With Clear and Preset

This single positive-edge-triggered D-type flip-flop is designed for 1.65V to 5.5V VCC operation. NanoFree™ package technology is a major breakthrough in IC packaging concepts, using the die as the package. A low level at the preset (PRE) or clear (CLR) input sets or resets the outputs, regardless of the levels of the other inputs. When PRE and CLR are inactive (high), data at the data (D) input meeting the setup time requirements is transferred to the outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not related directly to the rise time of the clock pulse. Following the hold-time interval, data at the D input can be changed without affecting the levels at the outputs. This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when powered down.