TIDUFA5 December   2024

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 Small Compact Size
      2. 2.2.2 Transformerless Design
    3. 2.3 Highlighted Products
      1. 2.3.1  BQ25790 IIC Controlled, 1–4 Cell, 5A Buck-Boost Battery Charger
      2. 2.3.2  TPS3422 Low-Power, Push-Button Controllers With Configurable Delay
      3. 2.3.3  SN74LVC1G74 Single Positive-Edge-Triggered D-Type Flip-Flop With Clear and Preset
      4. 2.3.4  TPS259470 2.7V–23V, 5.5A, 28mΩ True Reverse Current Blocking eFuse
      5. 2.3.5  TPS54218 2.95V to 6V Input, 2A Synchronous Step-Down SWIFT Converter
      6. 2.3.6  TPS54318 2.95V to 6V Input, 3A Synchronous Step-Down SWIFT Converter
      7. 2.3.7  LM5158 2.2MHz, Wide VIN, 85V Output Boost, SEPIC, or Flyback Converter
      8. 2.3.8  TPS61178 20V Fully Integrated Sync Boost With Load Disconnect
      9. 2.3.9  LMZM23601 36V, 1A Step-Down DC-DC Power Module in 3.8mm × 3mm Package
      10. 2.3.10 TPS7A39 Dual, 150mA, Wide-VIN, Positive and Negative Low-Dropout (LDO) Voltage Regulator
      11. 2.3.11 TPS74401 3.0A, Ultra-LDO With Programmable Soft Start
      12. 2.3.12 TPS7A96 2A, Ultra-Low Noise, Ultra-high PSRR RF Voltage Regulator
      13. 2.3.13 LM3880 3-Rail Simple Power Sequencer With Fixed Time Delay
      14. 2.3.14 DAC53401 10-Bit, Voltage-Output DAC With Nonvolatile Memory
      15. 2.3.15 INA231 28V, 16-bit, I2C Output Current, Voltage, and Power Monitor With Alert in WCSP
  9. 3System Design Theory
    1. 3.1 Input Section
      1. 3.1.1 Buck-Boost Charger
      2. 3.1.2 Power On or Off
    2. 3.2 Designing SEPIC and Cuk Based High-Voltage Power Supply
      1. 3.2.1 Basic Operation Principle of SEPIC and Cuk Converters
      2. 3.2.2 Dual High-Voltage Power Supply Design Using Uncoupled Inductors With SEPIC and Cuk
        1. 3.2.2.1 Duty Cycle
        2. 3.2.2.2 Inductor Selection
        3. 3.2.2.3 Power MOSFET Verification
        4. 3.2.2.4 Output Diode Selection
        5. 3.2.2.5 Coupling Capacitor Selection
        6. 3.2.2.6 Output Capacitor Selection
        7. 3.2.2.7 Input Capacitor Selection
        8. 3.2.2.8 Programming the Output Voltage With Adjustable function
    3. 3.3 Designing the Low-Voltage Power Supply
      1. 3.3.1 Designing the TPS54218 Through WEBENCH Power Designer
      2. 3.3.2 ±5V Transmit Supply Generation
    4. 3.4 System Clock Synchronization
    5. 3.5 Power and Data Output Connector
    6. 3.6 System Current and Power Monitoring
  10. 4Hardware, Testing Requirements, and Test Results
    1. 4.1 Hardware Requirements
    2. 4.2 Test Setup
    3. 4.3 Test Results
      1. 4.3.1 Efficiency Test Result
      2. 4.3.2 Line Regulation Testing Result
      3. 4.3.3 Spectrum Test Result
  11. 5Design and Documentation Support
    1. 5.1 Design Files
      1. 5.1.1 Schematics
      2. 5.1.2 BOM
      3. 5.1.3 PCB Layout Recommendations
        1. 5.1.3.1 High-Voltage Supply Layout
    2. 5.2 Tools and Software
    3. 5.3 Documentation Support
    4. 5.4 Support Resources
    5. 5.5 Trademarks

Spectrum Test Result

Spectrum analysis can help a designer to evaluate the harmonic of the output power supply and then evaluate the noise performance. Figure 4-19 through Figure 4-37 show the testing results.

TIDA-010269 AVDD 1.2V Output and
                        Spectrum Under DC ModeFigure 4-19 AVDD 1.2V Output and Spectrum Under DC Mode
TIDA-010269 AVDD 1.8V and Spectrum
                        Under DC ModeFigure 4-21 AVDD 1.8V and Spectrum Under DC Mode
TIDA-010269 FPGA-1.8V Output and
                        Spectrum Under DC ModeFigure 4-23 FPGA-1.8V Output and Spectrum Under DC Mode
TIDA-010269 FPGA-1.0V Output and
                        Spectrum Under DC ModeFigure 4-25 FPGA-1.0V Output and Spectrum Under DC Mode
TIDA-010269 FPGA-2.5V Output and
                        Spectrum Under DC ModeFigure 4-27 FPGA-2.5V Output and Spectrum Under DC Mode
TIDA-010269 MHV Output and Spectrum
                        Under DC ModeFigure 4-29 MHV Output and Spectrum Under DC Mode
TIDA-010269 PHV Output and
                        Spectrum Under DC ModeFigure 4-31 PHV Output and Spectrum Under DC Mode
TIDA-010269 AVEE -5V Output and
                        Spectrum Under DC ModeFigure 4-33 AVEE -5V Output and Spectrum Under DC Mode
TIDA-010269 AVDD 5V Output and
                        SpectrumFigure 4-35 AVDD 5V Output and Spectrum
TIDA-010269 Synchronous Clock—Yellow:
                        Input, Blue: OutputFigure 4-37 Synchronous Clock—Yellow: Input, Blue: Output
TIDA-010269 AVDD 1.2V Output and
                        Spectrum Under AC Mode With Full LoadFigure 4-20 AVDD 1.2V Output and Spectrum Under AC Mode With Full Load
TIDA-010269 AVDD 1.8V and Spectrum
                        Under AC Mode With Full LoadFigure 4-22 AVDD 1.8V and Spectrum Under AC Mode With Full Load
TIDA-010269 FPGA-1.8V Output and
                        Spectrum Under AC Mode and Full LoadFigure 4-24 FPGA-1.8V Output and Spectrum Under AC Mode and Full Load
TIDA-010269 FPGA-1.0V Output and
                        Spectrum Under AC Mode and Full LoadFigure 4-26 FPGA-1.0V Output and Spectrum Under AC Mode and Full Load
TIDA-010269 FPGA-2.5V Output and
                        Spectrum Under AC Mode and Full LoadFigure 4-28 FPGA-2.5V Output and Spectrum Under AC Mode and Full Load
TIDA-010269 MHV Output and Spectrum
                        Under AC Mode and Full LoadFigure 4-30 MHV Output and Spectrum Under AC Mode and Full Load
TIDA-010269 PHV Output and
                        Spectrum Under AC Mode and Full LoadFigure 4-32 PHV Output and Spectrum Under AC Mode and Full Load
TIDA-010269 AVEE -5V Output Spectrum
                        Under AC Mode and Full LoadFigure 4-34 AVEE -5V Output Spectrum Under AC Mode and Full Load
TIDA-010269 AVDD 5V Output Spectrum
                        Under AC Mode and Full LoadFigure 4-36 AVDD 5V Output Spectrum Under AC Mode and Full Load