TIDUFB3 July   2025

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
    3. 2.3 Highlighted Products
      1. 2.3.1 TPS7H5006-SEP
      2. 2.3.2 TPS7H6025-SEP
      3. 2.3.3 TPS7H1111-SEP
      4. 2.3.4 TPS7H4010-SEP
      5. 2.3.5 TPS73801-SEP
      6. 2.3.6 TPS7H3302-SEP
      7. 2.3.7 TPS7H3014-SEP
      8. 2.3.8 TPS7H2221-SEP
      9. 2.3.9 SN54SC6T14-SEP
  9. 3System Design Theory
    1. 3.1 0V8 Discrete Buck Regulator (VCCINT)
      1. 3.1.1 VCCINT Load Step
    2. 3.2 Buck Regulators (Integrated)
      1. 3.2.1 1V2
      2. 3.2.2 1V2_VCCO
      3. 3.2.3 1V2_MEM
      4. 3.2.4 2V5_DDR_VPP
      5. 3.2.5 3V3_VCCO
    3. 3.3 Linear Regulators
      1. 3.3.1 DDR Termination
      2. 3.3.2 0V92
      3. 3.3.3 1V5_GTY
      4. 3.3.4 1V5
      5. 3.3.5 5V0_SYS
    4. 3.4 Sequencing
      1. 3.4.1 TPS7H3014-SP Sequencer
      2. 3.4.2 TPS7H2221-SEP Discharge Circuit
      3. 3.4.3 VCCINT Discharge Circuit
  10. 4Hardware, Testing Requirements, and Test Results
    1. 4.1 Hardware Requirements
    2. 4.2 Test Setup
    3. 4.3 Test Results
      1. 4.3.1 Discrete Buck Regulator (VCCINT)
        1. 4.3.1.1 0V8
      2. 4.3.2 Buck Regulators (Integrated)
        1. 4.3.2.1 1V2
        2. 4.3.2.2 1V2_VCCO
        3. 4.3.2.3 1V2_MEM
        4. 4.3.2.4 2V5_DDR_VPP
        5. 4.3.2.5 3V3_VCCO
      3. 4.3.3 Linear Regulators
        1. 4.3.3.1 0V6_VTT
        2. 4.3.3.2 0V92
        3. 4.3.3.3 1V5_GTY
        4. 4.3.3.4 1V5
        5. 4.3.3.5 5V0_SYS
  11. 5Design and Documentation Support
    1. 5.1 Design Files
      1. 5.1.1 Schematics
      2. 5.1.2 BOM
      3. 5.1.3 Layout Prints
    2. 5.2 Documentation Support
    3. 5.3 Support Resources
    4. 5.4 Trademarks
  12. 6About the Author

Test Setup

Connect the power supply to the input terminals (labeled 12V0_SYS) and make sure the 12V is connected to the red connector and GND is connected to the black connector. To automatically start-up when the power is applied, make sure the sequencer is enabled with SW1 set to Enable. After the power supplies are all sequenced up, the supplies can then be sequenced down with the sequence down button, SW3. The supplies can again be sequenced up with the sequence up button (SW2).

To test individual power supplies, connect the electronic load to the desired output terminals. Multiple loads can be applied simultaneously if desired. The loads are not intended to go above the rated output listed on the board.

TIDA-050088
CAUTION:

Caution Hot surface. Contact can cause burns. Do not touch!

Some components can reach high temperatures > 55°C when the board is powered on. Do not touch the board at any point during operation or immediately after operating, as high temperatures can be present.