TIDUFE5 July   2025

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Terminology
    2. 1.2 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
    3. 2.3 Highlighted Products
      1. 2.3.1  TMS320F2800137
      2. 2.3.2  LMG3651R025
      3. 2.3.3  LMG2650
      4. 2.3.4  TMCS1126
      5. 2.3.5  ISO6721
      6. 2.3.6  UCC28881
      7. 2.3.7  UCC27712
      8. 2.3.8  TPS562206
      9. 2.3.9  TLV9062
      10. 2.3.10 TLV74033
  9. 3System Design Theory
    1. 3.1 Totem Pole PFC
      1. 3.1.1 Inductor Ratings
      2. 3.1.2 AC Voltage Sensing
      3. 3.1.3 DC Link Voltage Sensing
      4. 3.1.4 AC Current Sensing
      5. 3.1.5 DC Link Capacitor Rating
    2. 3.2 Three-Phase PMSM Drive
      1. 3.2.1 Field Oriented Control of PM Synchronous Motor
        1. 3.2.1.1 Space Vector Definition and Projection
        2. 3.2.1.2 Clarke Transformation
        3. 3.2.1.3 Park Transformation
        4. 3.2.1.4 Basic Scheme of FOC for AC Motor
        5. 3.2.1.5 Rotor Flux Position
      2. 3.2.2 Sensorless Control of PM Synchronous Motor
        1. 3.2.2.1 Enhanced Sliding Mode Observer With Phase Locked Loop
          1. 3.2.2.1.1 Mathematical Model and FOC Structure of an IPMSM
          2. 3.2.2.1.2 Design of ESMO for the IPMSM
          3. 3.2.2.1.3 Rotor Position and Speed Estimation With PLL
      3. 3.2.3 Hardware Prerequisites for Motor Drive
        1. 3.2.3.1 Current Sensing With Three-Shunt
        2. 3.2.3.2 Motor Voltage Feedback
  10. 4Hardware, Testing Requirements, and Test Results
    1. 4.1 Hardware Requirements
      1. 4.1.1 Hardware Board Overview
      2. 4.1.2 Test Conditions
      3. 4.1.3 Test Equipment Required for Board Validation
    2. 4.2 Test Setup
    3. 4.3 Test Results
      1. 4.3.1 Functional Waveforms
  11. 5Design and Documentation Support
    1. 5.1 Design Files
      1. 5.1.1 Schematics
      2. 5.1.2 Bill of Materials
      3. 5.1.3 Altium Project
      4. 5.1.4 Gerber Files
      5. 5.1.5 PCB Layout Recommendations
    2. 5.2 Tools
    3. 5.3 Documentation Support
    4. 5.4 Support Resources
    5. 5.5 Trademarks
  12. 6About the Author

Functional Waveforms

Figure 4-3 is a screen shot of 15V and 3.3V bias supply when powered onboard. The following displays shows 3.3V is set up when the 15V voltage rail reaches 12.7V.

TIDA-010282 15V and 3.3V Powering On
CH1 (Blue): 15VDC
CH2 (Dark Green): 3.3VDC
Figure 4-3 15V and 3.3V Powering On

Figure 4-3 is a screen shot 15V and 3.3V bias supply when the board is powered off. Since the 5V DC/DC TPS562206 has 12.7VDC enable voltage, and has 1.9V hysteresis voltage, this prevents any bounce up after 3.3V falls down to zero.

TIDA-010282 15V and 3.3V Powering Off
CH1 (Blue): 15VDC
CH2 (Dark Green): 3.3VDC
Figure 4-4 15V and 3.3V Powering Off

GaN devices exhibit extremely fast slew rates, permitting remarkably short dead times in high-performance power electronic applications. Figure 4-5 displays a 300ns dead time for PFC circuit using Gallium Nitride (GaN) transistors.

TIDA-010282 300ns PFC Dead Time for GaN
CH1 (Blue): PWM for Bottom GaN
CH2 (Light Blue): Switching Node Voltage
CH3 (Purple): PWM for Top GaN
CH4 (Green): Boost Inductor current
Figure 4-5 300ns PFC Dead Time for GaN

Figure 4-6 is a screen shot of 100ns dead time for motor inverter stage.

TIDA-010282 100ns Dead Time for Motor
          Inverter
CH1 (Blue): PWM for Top side GaN
CH2 (Light Blue): PWM for bottom side GaN
Figure 4-6 100ns Dead Time for Motor Inverter

Figure 4-7 is a screen shot of 2ARMS motor phase current.

TIDA-010282 Motor Phase Current
CH4 (Pink): Measured motor phase current with a current probe
Figure 4-7 Motor Phase Current