Product details

Number of outputs 8 Frequency (Max) (kHz) 2000 Number of ADC channels 15 Analog comparators 7 Communications 1 SPI, 2 I2C, 2 PMBUS, 2 UART Compensator 2-pole/2-zero (PID hardware) DPWM resolution (ps) 250 GPIOs 43 Number of digital power peripheral feedback loops 3 Non-volatile memory 128kB (Program), 2kB (Data) Processor 31.25MHz, 32-bit ARM7 Operating temperature range (C) -40 to 125 Rating Catalog
Number of outputs 8 Frequency (Max) (kHz) 2000 Number of ADC channels 15 Analog comparators 7 Communications 1 SPI, 2 I2C, 2 PMBUS, 2 UART Compensator 2-pole/2-zero (PID hardware) DPWM resolution (ps) 250 GPIOs 43 Number of digital power peripheral feedback loops 3 Non-volatile memory 128kB (Program), 2kB (Data) Processor 31.25MHz, 32-bit ARM7 Operating temperature range (C) -40 to 125 Rating Catalog
TQFP (PFC) 80 144 mm² 12 x 12
  • 128 kB Program Flash Derivative of UCD3138xA Family
    • 4-32 kB Program Flash Memory Banks
    • Supports Execution From 1 Bank, While Programming Another
    • Capability to Update Firmware Without Shutting Down the Power Supply
    • Additional Communication Ports Compared to the UCD3138xA (+1 SPI, +1 I2C)
    • Boot Flash Based Dual Memory Image Support for ‘On the Fly’ Firmware Updates
  • Synchronous Rectifier Dead Time Optimization Peripheral to Use with UCD7138 Synchronous Rectifier Driver
  • Digital Control of up to 3 Independent Feedback Loops
    • Dedicated PID Based Hardware
    • 2-pole/2-zero Configurable, Non-Linear Control
  • Up to 16 MSPS Error A/D Converter (EADC)
    • Configurable Resolution (min: 1 mV/LSB)
    • Up to 8x Oversampling and Adaptive Sample Positioning
    • Hardware Based Averaging (up to 8x)
    • 14 bit Effective Reference DAC
  • Up to 8 High Resolution Digital Pulse Width Modulated (DPWM) Outputs
    • 250 ps Pulse Width Resolution
    • 4 ns Frequency and Phase Resolution
    • Adjustable Phase Shift and Dead-bands
    • Cycle-by-Cycle Duty Cycle Matching
    • Up to 2 MHz Switching Frequency
  • Configurable Trailing/Leading/Triangular Modulation
  • RTC Support
  • External Crystal Interface
  • Configurable Feedback Control
    • Voltage, Average Current and Peak Current Mode Control
    • Constant Current, Constant Power
  • Configurable FM, Phase Shift Modulation and PWM
  • Fast, Automatic and Smooth Mode Switching
    • Frequency Modulation and PWM
    • Phase Shift Modulation and PWM
  • High Efficiency and Light Load Management
    • Burst Mode and Ideal Diode Emulation
    • Synchronous Rectifier Soft On/Off
    • Low IC Standby Power
  • Primary Side Voltage Sensing
  • Current Share (Average and Master/Slave)
  • Feature Rich Fault Protection Options
    • 7 Analog / 4 Digital Comparators,
    • Cycle-by-Cycle Current Limiting
    • Programmable Blanking Time and Fault Counting
    • External Fault Inputs
  • Synchronization of DPWM Waveforms Between Multiple UCD3138x Devices
  • 15 channel, 12 bit, 539 ksps General Purpose ADC
  • Internal Temperature Sensor
  • Fully ProgrammableHigh-Performance 31.25 MHz, 32-bit ARM7TDMI-S Processor
    • 128 kB Program Flash (4-32 kB Banks)
    • 2 kB Data Flash with ECC
    • 8 kB Data RAM
    • 8 kB Boot ROM Enables Firmware Boot-Load\
  • Communication Peripherals,
    • 2 - I2C/PMBus interfaces
    • 2 - UARTs, 1 - SPI
  • UART Auto Baud Rate Adjustment
  • Timer Capture with Selectable Input Pins
  • 80-pin QFP Package
  • Operating Temperature: –40°C to 125°C
  • Debug Interface
    • Code Composer Studio with JTAG Interface
    • Fusion Digital Power Designer GUI Support
  • 128 kB Program Flash Derivative of UCD3138xA Family
    • 4-32 kB Program Flash Memory Banks
    • Supports Execution From 1 Bank, While Programming Another
    • Capability to Update Firmware Without Shutting Down the Power Supply
    • Additional Communication Ports Compared to the UCD3138xA (+1 SPI, +1 I2C)
    • Boot Flash Based Dual Memory Image Support for ‘On the Fly’ Firmware Updates
  • Synchronous Rectifier Dead Time Optimization Peripheral to Use with UCD7138 Synchronous Rectifier Driver
  • Digital Control of up to 3 Independent Feedback Loops
    • Dedicated PID Based Hardware
    • 2-pole/2-zero Configurable, Non-Linear Control
  • Up to 16 MSPS Error A/D Converter (EADC)
    • Configurable Resolution (min: 1 mV/LSB)
    • Up to 8x Oversampling and Adaptive Sample Positioning
    • Hardware Based Averaging (up to 8x)
    • 14 bit Effective Reference DAC
  • Up to 8 High Resolution Digital Pulse Width Modulated (DPWM) Outputs
    • 250 ps Pulse Width Resolution
    • 4 ns Frequency and Phase Resolution
    • Adjustable Phase Shift and Dead-bands
    • Cycle-by-Cycle Duty Cycle Matching
    • Up to 2 MHz Switching Frequency
  • Configurable Trailing/Leading/Triangular Modulation
  • RTC Support
  • External Crystal Interface
  • Configurable Feedback Control
    • Voltage, Average Current and Peak Current Mode Control
    • Constant Current, Constant Power
  • Configurable FM, Phase Shift Modulation and PWM
  • Fast, Automatic and Smooth Mode Switching
    • Frequency Modulation and PWM
    • Phase Shift Modulation and PWM
  • High Efficiency and Light Load Management
    • Burst Mode and Ideal Diode Emulation
    • Synchronous Rectifier Soft On/Off
    • Low IC Standby Power
  • Primary Side Voltage Sensing
  • Current Share (Average and Master/Slave)
  • Feature Rich Fault Protection Options
    • 7 Analog / 4 Digital Comparators,
    • Cycle-by-Cycle Current Limiting
    • Programmable Blanking Time and Fault Counting
    • External Fault Inputs
  • Synchronization of DPWM Waveforms Between Multiple UCD3138x Devices
  • 15 channel, 12 bit, 539 ksps General Purpose ADC
  • Internal Temperature Sensor
  • Fully ProgrammableHigh-Performance 31.25 MHz, 32-bit ARM7TDMI-S Processor
    • 128 kB Program Flash (4-32 kB Banks)
    • 2 kB Data Flash with ECC
    • 8 kB Data RAM
    • 8 kB Boot ROM Enables Firmware Boot-Load\
  • Communication Peripherals,
    • 2 - I2C/PMBus interfaces
    • 2 - UARTs, 1 - SPI
  • UART Auto Baud Rate Adjustment
  • Timer Capture with Selectable Input Pins
  • 80-pin QFP Package
  • Operating Temperature: –40°C to 125°C
  • Debug Interface
    • Code Composer Studio with JTAG Interface
    • Fusion Digital Power Designer GUI Support

The UCD3138xA is a digital power supply controller from Texas Instruments offering superior levels of integration and performance in a single chip solution. The UCD3138128A offers 128 kB of program flash memory in comparison to 32 kB in UCD3138A. and it also provides additional options for communication such as SPI and a second I2C/PMBus port. The availability of of program Flash memory in multiple 32 kB banks enables designers to implement dual images of firmware (that is, one main image + one back-up image) in the device and provides the option to execute from either of the banks using appropriate algorithms. It also creates the unique opportunity for the processor to load a new program and subsequently execute that program without interrupting power delivery. This feature allows the end user to add new features to the power supply in the field while eliminating any down-time required to load the new program.

The flexible nature of the UCD3138xA family makes it suitable for a wide variety of power conversion applications. In addition, multiple peripherals inside the device have been specifically optimized to enhance the performance of AC/DC and isolated DC/DC applications and reduce the solution component count in the IT and network infrastructure space. The UCD3138xA family is a fully programmable solution offering customers complete control of their application, along with ample flexibility for many solutions. At the same time, TI is committed to simplifying our customer’s development effort through offering best in class development tools, including application firmware, Code Composer StudioTM software development environment, and TI’s Fusion Power Development GUI which enables customers to configure and monitor key system parameters.

At the core of the controller are the Digital Power Peripherals (DPP). Each DPP implements a high speed digital control loop consisting of a dedicated Error Analog to Digital Converter (EADC), a PID based 2 pole - 2 zero digital compensator and DPWM outputs with 250 ps pulse width resolution. The device also contains a 12-bit, 539 ksps general purpose ADC with up to 15 channels, timers, interrupt control, PMBus, I2C, SPI and UART communications ports. The device is based on a 32-bit ARM7TDMI-S RISC microcontroller that performs real-time monitoring, configures peripherals and manages communications. The ARM microcontroller executes its program out of programmable flash memory as well as on chip RAM and ROM.

In addition to the DPP, specific power management peripherals have been added to enable high efficiency across the entire operating range, high integration for increased power density, reliability, and lowest overall system cost and high flexibility with support for the widest number of control schemes and topologies. Such peripherals include: light load burst mode, synchronous rectification, LLC and phase shifted full bridge mode switching, input voltage feed forward, copper trace current sense, ideal diode emulation, constant current constant power control, synchronous rectification soft on and off, peak current mode control, flux balancing, secondary side input voltage sensing, high resolution current sharing, hardware configurable soft start with pre bias, as well as several other features. Topology support has been optimized for voltage mode and peak current mode controlled phase shifted full bridge, single and dual phase PFC, bridgeless PFC, hard switched full bridge and half bridge, active clamp forward converter, two switch forward converter and LLC half bridge and full bridge.

The UCD3138128A is a functional variant of the UCD3138 Digital Power Controller that includes significant improvements over the UCD3138. For a description of the complete changes made in the UCD3138128A, refer to UCD3138128A Migration Guide. The major improvements are: The General Purpose ADC has been improved for better accuracy and performance at extreme cold temperatures (–40°C). The UART peripheral has been modified to include a hardware based auto-baud rate adjustment feature. A new Synchronous Rectifier Dead Time Optimization hardware peripheral has been added. Benefits include: Improved efficiency Reduced synchronous rectifier voltage stressesShorter development cycleA Duty Cycle Read Function has been added to improve use in peak current mode.

The UCD3138xA is a digital power supply controller from Texas Instruments offering superior levels of integration and performance in a single chip solution. The UCD3138128A offers 128 kB of program flash memory in comparison to 32 kB in UCD3138A. and it also provides additional options for communication such as SPI and a second I2C/PMBus port. The availability of of program Flash memory in multiple 32 kB banks enables designers to implement dual images of firmware (that is, one main image + one back-up image) in the device and provides the option to execute from either of the banks using appropriate algorithms. It also creates the unique opportunity for the processor to load a new program and subsequently execute that program without interrupting power delivery. This feature allows the end user to add new features to the power supply in the field while eliminating any down-time required to load the new program.

The flexible nature of the UCD3138xA family makes it suitable for a wide variety of power conversion applications. In addition, multiple peripherals inside the device have been specifically optimized to enhance the performance of AC/DC and isolated DC/DC applications and reduce the solution component count in the IT and network infrastructure space. The UCD3138xA family is a fully programmable solution offering customers complete control of their application, along with ample flexibility for many solutions. At the same time, TI is committed to simplifying our customer’s development effort through offering best in class development tools, including application firmware, Code Composer StudioTM software development environment, and TI’s Fusion Power Development GUI which enables customers to configure and monitor key system parameters.

At the core of the controller are the Digital Power Peripherals (DPP). Each DPP implements a high speed digital control loop consisting of a dedicated Error Analog to Digital Converter (EADC), a PID based 2 pole - 2 zero digital compensator and DPWM outputs with 250 ps pulse width resolution. The device also contains a 12-bit, 539 ksps general purpose ADC with up to 15 channels, timers, interrupt control, PMBus, I2C, SPI and UART communications ports. The device is based on a 32-bit ARM7TDMI-S RISC microcontroller that performs real-time monitoring, configures peripherals and manages communications. The ARM microcontroller executes its program out of programmable flash memory as well as on chip RAM and ROM.

In addition to the DPP, specific power management peripherals have been added to enable high efficiency across the entire operating range, high integration for increased power density, reliability, and lowest overall system cost and high flexibility with support for the widest number of control schemes and topologies. Such peripherals include: light load burst mode, synchronous rectification, LLC and phase shifted full bridge mode switching, input voltage feed forward, copper trace current sense, ideal diode emulation, constant current constant power control, synchronous rectification soft on and off, peak current mode control, flux balancing, secondary side input voltage sensing, high resolution current sharing, hardware configurable soft start with pre bias, as well as several other features. Topology support has been optimized for voltage mode and peak current mode controlled phase shifted full bridge, single and dual phase PFC, bridgeless PFC, hard switched full bridge and half bridge, active clamp forward converter, two switch forward converter and LLC half bridge and full bridge.

The UCD3138128A is a functional variant of the UCD3138 Digital Power Controller that includes significant improvements over the UCD3138. For a description of the complete changes made in the UCD3138128A, refer to UCD3138128A Migration Guide. The major improvements are: The General Purpose ADC has been improved for better accuracy and performance at extreme cold temperatures (–40°C). The UART peripheral has been modified to include a hardware based auto-baud rate adjustment feature. A new Synchronous Rectifier Dead Time Optimization hardware peripheral has been added. Benefits include: Improved efficiency Reduced synchronous rectifier voltage stressesShorter development cycleA Duty Cycle Read Function has been added to improve use in peak current mode.

Download

Technical documentation

star = Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 5
Type Title Date
* Data sheet UCD3138128A Highly-Integrated Digital Controller For Isolated Power datasheet (Rev. A) 19 Jan 2017
* Errata UCD3138 Integrated Power Controller Family Errata (Rev. A) 11 Mar 2020
Application note Fusion Digital Power Studio for UCD3138 Isolated Power Applications (Rev. C) 24 Jun 2019
Application note UCD3138 Family - Practical Design Guideline (Rev. B) 20 Nov 2018
User guide UCD3138128A Migration Guide 22 Sep 2017

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

UCD3138A64OEVM-662 — UCD3138A64 Programmable Digital Power Controller Open Loop Evaluation Module

The UCD3138A64OEVM-662 EVM offers an easy to use test platform for stand-alone evaluation of UCD3138A64 digital controller optimized for isolated power applications. Featuring an 80-pin socket and a comprehensive set of test points, the EVM allows hardware and firmware engineers to manipulate (...)

In stock
Limit: 3
Evaluation board

UCD3138HSFBEVM-029 — UCD3138 Hard Switching Full Bridge Converter Evaluation Module

The Texas Instruments UCD3138HSFBEVM-029 evaluation module (EVM) is a digitally controlled hard switching full bridge converter based on the UCD3138RHA programmable digital power controller. The EVM is a standalone Symmetrical Hard Switching Full-Bridge (HSFB) DC-DC power converter designed for (...)
In stock
Limit: 3
Evaluation board

UCD3138PFCEVM-026 — UCD3138 Digital Power Factor Correction Pre-regulator Evaluation Module

The Texas Instruments UCD3138PFCEVM-026 evaluation module (EVM) is a digitally controlled single phase PFC pre-regulator based on the UCD3138 programmable digital power controller. The EVM accepts universal ac line input from 90Vac to 264Vac, 47Hz to 63Hz. The nominal output voltage is 390VDC. (...)

In stock
Limit: 3
Evaluation board

UCD3138PSFBEVM-027 — UCD3138PSFBEVM-027 Evaluation Module

This EVM, UCD3138PSFBEVM-027 is to help evaluate the UCD3138 64-pin digital control IC in an off-line power converter application and then to aid in its design. The EVM is a standalone phase-shifted full-bridge DC-DC power converter. The EVM is used together with its control card, (...)
In stock
Limit: 3
Daughter card

UCD3138A64CEVM-660 — UCD3138A64 Control Card Evaluation Module

The Texas Instruments UCD3138A64CEVM-660 evaluation module (EVM) functions as a control card for UCD3138A64 digital controller for isolated power applications from Texas Instruments. The EVM can be used either as a stand-alone board to study the UCD3138A64 device or as a control card for (...)

In stock
Limit: 3
Debug probe

TMDSEMU110-U — XDS110 JTAG Debug Probe

The Texas Instruments XDS110 is a new class of debug probe (emulator) for TI embedded processors. The XDS110 replaces the XDS100 family while supporting a wider variety of standards (IEEE1149.1, IEEE1149.7, SWD) in a single pod. Also, all XDS debug probes support Core and System Trace in all ARM (...)

Out of stock on TI.com
Debug probe

TMDSEMU560V2STM-U — XDS560v2 System Trace USB Debug Probe

The XDS560v2 is the highest performance of the XDS family of debug probes and supports both the traditional JTAG standard (IEEE1149.1) and cJTAG (IEEE1149.7).  Note that it does not support serial wire debug (SWD).

All XDS debug probes support Core and System Trace in all ARM and DSP processors that (...)

In stock
Limit: 1
Debug probe

TMDSEMU560V2STM-UE — XDS560v2 System Trace USB & Ethernet Debug Probe

The XDS560v2 is the highest performance of the XDS family of debug probes and supports both the traditional JTAG standard (IEEE1149.1) and cJTAG (IEEE1149.7). Note that it does not support serial wire debug (SWD).

All XDS debug probes support Core and System Trace in all ARM and DSP processors that (...)

In stock
Limit: 1
Application software & framework

FUSION-DIGITAL-POWER-STUDIO — Fusion Digital Power Studio

Fusion Digital PowerTM Studio incorporates software tools for Texas Instruments' UCD3138 Integrated Digital Controller family.   Fusion Digital Power helps power supply engineers to gain benefits of digital power without learning complex programming skills. Fusion Digital Power is an intuitive (...)
Application software & framework

UCD3138_FW_SDK — UCD3138 Application Development Firmware Kit

The UCD3138 firmware is a free software development kit for Texas Instruments’ UCD3138 integrated digital power controller family. It encompasses firmware development tools along with supporting collateral for the most popular power supply topologies for quicker evaluation and development of (...)
Code example or demo

UCD-TRAINING-LABS — UCD3138 Integrated Digital Controller Training Labs Firmware

UCD3138 integrated digital power controller training labs provides quick start learning tool for getting acquainted with digital controller. UCD3138 integrated digital controller offers advanced Power Peripherals operating autonomous from the processor. Device includes advanced Protection features, (...)
Driver or library

FUSION_DIGITAL_POWER_API — Fusion Digital Power - API

The Fusion Digital Power Studio is built on top of a Microsoft.NET Application Programming Interface (Fusion-API) that handles I2C/SMBus communication and abstracts devices and commands. It provides high level interfaces to common tasks such as command read/write, full device configuration (...)
Firmware

UCD3138FW-FBLLC — Full Bridge / Phase Shift LLC Firmware

UCD3138 Phase Shift  LLC quickly gets a designer through evaluation to production in power supply designs based on a resonant LLC topology by providing firmware with ZVS operation and mode switching capability to achieve high efficiency across wider operating conditions.

The resonant LLC topology (...)

Firmware

UCD3138FW-HSFB — UCD3138 Hard Switch Full Bridge Firmware

UCD3138 Hard Switched Full Bridge (HSFB) topology firmware gets a designer through evaluation to production in power supply designs based on high power Hard Switched Full Bridge topology by providing all-inclusive firmware with input voltage feed forward, copper trace current sensing, on the fly (...)
Firmware

UCD3138FW-PFC — UCD3138 Power Factor Correction Firmware

UCD3138 Power Factor Correction (PFC) firmware gets a designer through evaluation to production in power supply designs based on a PFC topology by providing all-inclusive firmware that can integrate easily with your housekeeping functionality.
Firmware

UCD3138FW-PSFB — UCD3138 Phase Shift Full Bridge Firmware

UCD3138 Phase Shift Full Bridge quickly gets a designer through evaluation to production in power supply designs based on high power PSFB topology by providing all-inclusive firmware with peak current mode control support, adaptive dead time optimization and programmable slope compensation.
Firmware

UCD3138FW_LLC — UCD3138 LLC Half Bridge Firmware

UCD3138 Resonant LLC Programmer quickly gets a designer through evaluation to production in power supply designs based on a resonant LLC topology by providing  firmware with ZCS protection and mode switching capability to achieve high efficiency across wider operating conditions. The sunflower (...)
IDE, configuration, compiler or debugger

CCSTUDIO — Code Composer Studio™ integrated development environment (IDE)

Code Composer Studio؜™ software is an integrated development environment (IDE) that supports TI's microcontroller (MCU) and embedded processor portfolios. Code Composer Studio software comprises a suite of tools used to develop and debug embedded applications. The software includes an (...)
Software programming tool

FUSION-PRODUCTION-GUI — Fusion Digital Power Production Tool

The Fusion Digital Power Production Tool (production GUI) is a graphical user interface used to download firmware, upgrade firmware, configure, calibrate and test.  This command-based interface allows the seamless integration of UCD flashing procedures in a production environment.

The production GUI (...)
Simulation model

UCD3138128A IBIS Model

SLUM628.ZIP (10 KB) - IBIS Model
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Reference designs

TIDA-00653 — Non-Isolated Bi-Directional Converter Reference Design for Battery Charging Applications

TIDA-00653 is a non-isolated 48 to 12-V bi-directional converter reference design for 48V battery applications enabled by the UCD3138 digital power controller. The design has the flexibility to work in either a ZVS transition-mode topology to optimize light-load efficiency, or a hard-switching (...)
Package Pins Download
TQFP (PFC) 80 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos