제품 상세 정보

Sample rate (max) (Msps) 1000, 2000 Resolution (Bits) 10 Number of input channels 1, 2 Interface type Parallel LVDS Analog input BW (MHz) 2800 Features Ultra High Speed Rating Space Peak-to-peak input voltage range (V) 0.8 Power consumption (typ) (mW) 2770 Architecture Folding Interpolating SNR (dB) 56.8 ENOB (bit) 9 SFDR (dB) 67.6 Operating temperature range (°C) -55 to 125 Input buffer Yes Radiation, TID (typ) (krad) 100 Radiation, SEL (MeV·cm2/mg) 120
Sample rate (max) (Msps) 1000, 2000 Resolution (Bits) 10 Number of input channels 1, 2 Interface type Parallel LVDS Analog input BW (MHz) 2800 Features Ultra High Speed Rating Space Peak-to-peak input voltage range (V) 0.8 Power consumption (typ) (mW) 2770 Architecture Folding Interpolating SNR (dB) 56.8 ENOB (bit) 9 SFDR (dB) 67.6 Operating temperature range (°C) -55 to 125 Input buffer Yes Radiation, TID (typ) (krad) 100 Radiation, SEL (MeV·cm2/mg) 120
CCGA (NAA) 376 780.6436 mm² 27.94 x 27.94
  • Total Ionizing Dose 100 krad(Si)
  • Single Event Latch-Up 120 Mev-cm2/mg
  • Excellent Accuracy and Dynamic Performance
  • Low Power Consumption
  • R/W SPI Interface for Extended Control Mode
  • Internally Terminated, Buffered, Differential Analog Inputs
  • Ability to Interleave the 2 Channels to Operate 1 Channel at Twice the Conversion Rate
  • Test Patterns at Output for System Debug
  • Programmable 15-Bit Gain and 12-Bit Plus Sign Offset Adjustments
  • Option of 1:2 Demuxed or 1:1 Non-demuxed LVDS Outputs
  • Auto-sync Feature for Multi-chip Systems
  • Single 1.9 ±0.1-V Power Supply
  • 376 Ceramic Pin Grid Array Package (28.2 mm x 28.2 mm x 3.1 mm with 1.27 mm ball-pitch)
  • Total Ionizing Dose 100 krad(Si)
  • Single Event Latch-Up 120 Mev-cm2/mg
  • Excellent Accuracy and Dynamic Performance
  • Low Power Consumption
  • R/W SPI Interface for Extended Control Mode
  • Internally Terminated, Buffered, Differential Analog Inputs
  • Ability to Interleave the 2 Channels to Operate 1 Channel at Twice the Conversion Rate
  • Test Patterns at Output for System Debug
  • Programmable 15-Bit Gain and 12-Bit Plus Sign Offset Adjustments
  • Option of 1:2 Demuxed or 1:1 Non-demuxed LVDS Outputs
  • Auto-sync Feature for Multi-chip Systems
  • Single 1.9 ±0.1-V Power Supply
  • 376 Ceramic Pin Grid Array Package (28.2 mm x 28.2 mm x 3.1 mm with 1.27 mm ball-pitch)

The ADC10D1000 is the latest advance in TI's Ultra-High-Speed ADC family of products. This low-power, high-performance CMOS analog-to-digital converter digitizes signals at 10-bit resolution at sampling rates of up to 1.0 GSPS in dual channel mode or 2.0 GSPS in single channel mode. The ADC10D1000 achieves excellent accuracy and dynamic performance while consuming a typical 2.9 W of power. This space grade, Radiation Tolerant part is rad hard to a single event latch up level of greater than 120MeV and a total dose (TID) of 100 krad(Si). The product is packaged in a hermatic 376 column thermally enhanced CPGA package rated over the temperature range of -55°C to +125°C.

The ADC10D1000 builds upon the features, architecture and functionality of the 8-bit GHz family of ADCs. New features include an auto-sync feature for multi-chip synchronization, independent programmable15-bit gain and 12-bit offset adjustment per channel, LC tank filter on the clock input, and the option of two's complement format for the digital output data. The unique folding and interpolating architecture, the fully differential comparator design, the innovative design of the internal track-and-hold amplifier and the self-calibration scheme enable a very flat response of all dynamic parameters beyond Nyquist, producing a high 8.9 Effective Number of Bits (ENOB) with a 498 MHz input signal and a 1.0 GHz sample rate while providing a 10−18 Code Error Rate (C.E.R.) Consuming a typical 2.9 W in Non-Demultiplex Mode at 1.0 GSPS from a single 1.9-V supply, this device is ensured to have no missing codes over the full operating temperature range.

Each channel has its own independent DDR Data Clock, DCLKI and DCLKQ, which are in phase when both channels are powered up, so that only one Data Clock could be used to capture all data, which is sent out at the same rate as the input sample clock. If the 1:2 Demultiplexed Mode is selected, a second 10-bit LVDS bus becomes active for each channel, such that the output data rate is sent out two times slower, but two times wider to relax data-capture timing margin. The two channels (I and Q) can also be interleaved (DES Mode) and used as a single 2.0 GSPS ADC to sample on the Q input. The output formatting is offset binary or two's complement and the Low Voltage Differential Signaling (LVDS) digital outputs are compatible with IEEE 1596.3-1996, with the exception of an adjustable common mode voltage between 0.8 V and 1.2 V.

The ADC10D1000 is the latest advance in TI's Ultra-High-Speed ADC family of products. This low-power, high-performance CMOS analog-to-digital converter digitizes signals at 10-bit resolution at sampling rates of up to 1.0 GSPS in dual channel mode or 2.0 GSPS in single channel mode. The ADC10D1000 achieves excellent accuracy and dynamic performance while consuming a typical 2.9 W of power. This space grade, Radiation Tolerant part is rad hard to a single event latch up level of greater than 120MeV and a total dose (TID) of 100 krad(Si). The product is packaged in a hermatic 376 column thermally enhanced CPGA package rated over the temperature range of -55°C to +125°C.

The ADC10D1000 builds upon the features, architecture and functionality of the 8-bit GHz family of ADCs. New features include an auto-sync feature for multi-chip synchronization, independent programmable15-bit gain and 12-bit offset adjustment per channel, LC tank filter on the clock input, and the option of two's complement format for the digital output data. The unique folding and interpolating architecture, the fully differential comparator design, the innovative design of the internal track-and-hold amplifier and the self-calibration scheme enable a very flat response of all dynamic parameters beyond Nyquist, producing a high 8.9 Effective Number of Bits (ENOB) with a 498 MHz input signal and a 1.0 GHz sample rate while providing a 10−18 Code Error Rate (C.E.R.) Consuming a typical 2.9 W in Non-Demultiplex Mode at 1.0 GSPS from a single 1.9-V supply, this device is ensured to have no missing codes over the full operating temperature range.

Each channel has its own independent DDR Data Clock, DCLKI and DCLKQ, which are in phase when both channels are powered up, so that only one Data Clock could be used to capture all data, which is sent out at the same rate as the input sample clock. If the 1:2 Demultiplexed Mode is selected, a second 10-bit LVDS bus becomes active for each channel, such that the output data rate is sent out two times slower, but two times wider to relax data-capture timing margin. The two channels (I and Q) can also be interleaved (DES Mode) and used as a single 2.0 GSPS ADC to sample on the Q input. The output formatting is offset binary or two's complement and the Low Voltage Differential Signaling (LVDS) digital outputs are compatible with IEEE 1596.3-1996, with the exception of an adjustable common mode voltage between 0.8 V and 1.2 V.

다운로드 스크립트와 함께 비디오 보기 동영상

기술 문서

star =TI에서 선정한 이 제품의 인기 문서
검색된 결과가 없습니다. 검색어를 지우고 다시 시도하십시오.
모두 보기18
유형 직함 날짜
* Data sheet ADC10D1000QML Low-Power, 10-Bit, Dual 1-GSPS or Single 2-GSPS Analog-to-Digital Converter datasheet (Rev. G) PDF | HTML 2016/12/07
* Radiation & reliability report ADC Single Event Upset Test Method 2012/05/07
* Radiation & reliability report ADC10D1000CCMLS SEE Report 2012/05/07
* Radiation & reliability report ADC10D1000CCMLS TID Report 2012/05/07
* Radiation & reliability report CMOS Low Dose Rate Paper 2012/05/07
* Radiation & reliability report Analysis of Low Dose Rate Effects on Parasitic Bipolar Structures in CMOS Proces 2012/05/04
More literature TI Engineering Evaluation Units vs. MIL-PRF-38535 QML Class V Processing (Rev. A) 2023/08/31
Application note Heavy Ion Orbital Environment Single-Event Effects Estimations (Rev. A) PDF | HTML 2022/11/17
Application note Single-Event Effects Confidence Interval Calculations (Rev. A) PDF | HTML 2022/10/19
Selection guide TI Space Products (Rev. I) 2022/03/03
Application brief Understanding Op Amp Noise in Audio Circuits PDF | HTML 2021/06/14
E-book Radiation Handbook for Electronics (Rev. A) 2019/05/21
Application note AN-2132 Synchronizing Multiple GSPS ADCs in a System: The AutoSync Feature (Rev. G) 2017/02/03
Application note Signal Chain Noise Figure Analysis 2014/10/29
Application note Synchronizing the Giga-Sample ADCs Interfaced with Multiple FPGAs 2014/08/06
Application note AN-2128 ADC1xD1x00 Pin Compatibility (Rev. C) 2013/05/01
Application note From Sample Instant to Data Output: Understanding Latency in the GSPS ADC 2012/12/18
Product overview ADC12Dxx00RF Direct RF-Sampling ADC Family 2012/05/16

설계 및 개발

추가 조건 또는 필수 리소스는 사용 가능한 경우 아래 제목을 클릭하여 세부 정보 페이지를 확인하세요.

평가 보드

ADC-LD-BB — ADC 저왜곡 발룬 보드

One ADC-LD-BB board is included in the hardware kit with the GSPS analog-to-digital converter (ADC) reference boards. Since the analog inputs to the ADC1xDxx00RB are differential and most signal sources are single ended, these balun boards are generally used to achieve (...)

사용 설명서: PDF
TI.com에서 구매할 수 없습니다
시뮬레이션 모델

ADC10D1000QML IBIS Model

SNAM012.ZIP (42 KB) - IBIS Model
시뮬레이션 툴

PSPICE-FOR-TI — TI 설계 및 시뮬레이션 툴용 PSpice®

TI용 PSpice®는 아날로그 회로의 기능을 평가하는 데 사용되는 설계 및 시뮬레이션 환경입니다. 완전한 기능을 갖춘 이 설계 및 시뮬레이션 제품군은 Cadence®의 아날로그 분석 엔진을 사용합니다. 무료로 제공되는 TI용 PSpice에는 아날로그 및 전력 포트폴리오뿐 아니라 아날로그 행동 모델에 이르기까지 업계에서 가장 방대한 모델 라이브러리 중 하나가 포함되어 있습니다.

TI 설계 및 시뮬레이션 환경용 PSpice는 기본 제공 라이브러리를 이용해 복잡한 혼합 신호 설계를 시뮬레이션할 수 있습니다. 레이아웃 및 제작에 (...)
패키지 다운로드
CCGA (NAA) 376 옵션 보기

주문 및 품질

포함된 정보:
  • RoHS
  • REACH
  • 디바이스 마킹
  • 납 마감/볼 재질
  • MSL 등급/피크 리플로우
  • MTBF/FIT 예측
  • 물질 성분
  • 인증 요약
  • 지속적인 신뢰성 모니터링
포함된 정보:
  • 팹 위치
  • 조립 위치

권장 제품에는 본 TI 제품과 관련된 매개 변수, 평가 모듈 또는 레퍼런스 디자인이 있을 수 있습니다.

지원 및 교육

TI 엔지니어의 기술 지원을 받을 수 있는 TI E2E™ 포럼

콘텐츠는 TI 및 커뮤니티 기고자에 의해 "있는 그대로" 제공되며 TI의 사양으로 간주되지 않습니다. 사용 약관을 참조하십시오.

품질, 패키징, TI에서 주문하는 데 대한 질문이 있다면 TI 지원을 방문하세요. ​​​​​​​​​​​​​​

동영상