SPRSP93B November   2024  – September 2025 F29H850TU , F29H859TU-Q1

ADVMIX  

  1.   1
  2. Features
  3. Applications
  4. Description
    1. 3.1 Functional Block Diagram
  5. Device Comparison
    1. 4.1 Related Products
  6. Pin Configuration and Functions
    1. 5.1 Pin Diagrams
    2. 5.2 Pin Attributes (F29H85x and F29P58x)
    3. 5.3 Pin Attributes (F29P32x)
    4. 5.4 Signal Descriptions
      1. 5.4.1 Analog Signals
      2. 5.4.2 Digital Signals
      3. 5.4.3 Test, JTAG, and Reset
    5. 5.5 Pins With Internal Pullup and Pulldown
    6. 5.6 Pin Multiplexing
      1. 5.6.1 GPIO Muxed Pins
    7. 5.7 Connections for Unused Pins
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  F29H85x ESD Ratings – Commercial
    3. 6.3  F29H85x ESD Ratings – Automotive
    4. 6.4  F29P58x ESD Ratings – Commercial
    5. 6.5  F29P58x ESD Ratings – Automotive
    6. 6.6  F29P32x ESD Ratings – Automotive
    7. 6.7  Recommended Operating Conditions
    8. 6.8  Power Consumption Summary
      1. 6.8.1 System Current Consumption VREG Disable - External Supply
      2. 6.8.2 System Current Consumption VREG Enabled
      3. 6.8.3 Operating Mode Test Description
      4. 6.8.4 Reducing Current Consumption
        1. 6.8.4.1 Typical Current Reduction per Disabled Peripheral
    9. 6.9  Electrical Characteristics
    10. 6.10 Special Considerations for 5V Fail-Safe Pins
    11. 6.11 Thermal Resistance Characteristics for ZEX Package
    12. 6.12 Thermal Resistance Characteristics for PTS Package
    13. 6.13 Thermal Resistance Characteristics for RFS Package
    14. 6.14 Thermal Resistance Characteristics for PZS Package
    15. 6.15 Thermal Design Considerations
    16. 6.16 System
      1. 6.16.1  Power Management Module (PMM)
        1. 6.16.1.1 Introduction
        2. 6.16.1.2 Overview
          1. 6.16.1.2.1 Power Rail Monitors
            1. 6.16.1.2.1.1 I/O POR (Power-On Reset) Monitor
            2. 6.16.1.2.1.2 I/O BOR (Brown-Out Reset) Monitor
            3. 6.16.1.2.1.3 VDD POR (Power-On Reset) Monitor
          2. 6.16.1.2.2 External Supervisor Usage
          3. 6.16.1.2.3 Delay Blocks
          4. 6.16.1.2.4 Internal VDD LDO Voltage Regulator (VREG)
          5. 6.16.1.2.5 VREGENZ
        3. 6.16.1.3 External Components
          1. 6.16.1.3.1 Decoupling Capacitors
            1. 6.16.1.3.1.1 VDDIO Decoupling
            2. 6.16.1.3.1.2 VDD Decoupling
        4. 6.16.1.4 Power Sequencing
          1. 6.16.1.4.1 Supply Pins Ganging
          2. 6.16.1.4.2 Signal Pins Power Sequence
          3. 6.16.1.4.3 Supply Pins Power Sequence
            1. 6.16.1.4.3.1 External VREG/VDD Mode Sequence
            2. 6.16.1.4.3.2 Internal VREG/VDD Mode Sequence
            3. 6.16.1.4.3.3 Supply Sequencing Summary and Effects of Violations
            4. 6.16.1.4.3.4 Supply Slew Rate
        5. 6.16.1.5 Power Management Module Electrical Data and Timing
          1. 6.16.1.5.1 Power Management Module Operating Conditions
          2. 6.16.1.5.2 Power Management Module Characteristics
      2. 6.16.2  Reset Timing
        1. 6.16.2.1 Reset Sources
        2. 6.16.2.2 Reset Electrical Data and Timing
          1. 6.16.2.2.1 Reset XRSn Timing Requirements
          2. 6.16.2.2.2 Reset XRSn Switching Characteristics
          3. 6.16.2.2.3 Reset Timing Diagrams
      3. 6.16.3  Clock Specifications
        1. 6.16.3.1 Clock Sources
        2. 6.16.3.2 Clock Frequencies, Requirements, and Characteristics
          1. 6.16.3.2.1 Input Clock Frequency and Timing Requirements, PLL Lock Times
            1. 6.16.3.2.1.1 Input Clock Frequency
            2. 6.16.3.2.1.2 XTAL Oscillator Characteristics
            3. 6.16.3.2.1.3 X1 Input Level Characteristics When Using an External Clock Source Not a Crystal
            4. 6.16.3.2.1.4 X1 Timing Requirements
            5. 6.16.3.2.1.5 AUXCLKIN Timing Requirements
            6. 6.16.3.2.1.6 APLL Characteristics
            7. 6.16.3.2.1.7 XCLKOUT Switching Characteristics PLL Bypassed or Enabled
            8. 6.16.3.2.1.8 Internal Clock Frequencies
        3. 6.16.3.3 Input Clocks
        4. 6.16.3.4 XTAL Oscillator
          1. 6.16.3.4.1 Introduction
          2. 6.16.3.4.2 Overview
            1. 6.16.3.4.2.1 Electrical Oscillator
              1. 6.16.3.4.2.1.1 Modes of Operation
                1. 6.16.3.4.2.1.1.1 Crystal Mode of Operation
                2. 6.16.3.4.2.1.1.2 Single-Ended Mode of Operation
              2. 6.16.3.4.2.1.2 XTAL Output on XCLKOUT
            2. 6.16.3.4.2.2 Quartz Crystal
            3. 6.16.3.4.2.3 GPIO Modes of Operation
          3. 6.16.3.4.3 Functional Operation
            1. 6.16.3.4.3.1 ESR – Effective Series Resistance
            2. 6.16.3.4.3.2 Rneg – Negative Resistance
            3. 6.16.3.4.3.3 Start-up Time
            4. 6.16.3.4.3.4 DL – Drive Level
          4. 6.16.3.4.4 How to Choose a Crystal
          5. 6.16.3.4.5 Testing
          6. 6.16.3.4.6 Common Problems and Debug Tips
          7. 6.16.3.4.7 Crystal Oscillator Specifications
            1. 6.16.3.4.7.1 Crystal Equivalent Series Resistance (ESR) Requirements
            2. 6.16.3.4.7.2 Crystal Oscillator Parameters
            3. 6.16.3.4.7.3 Crystal Oscillator Electrical Characteristics
        5. 6.16.3.5 Internal Oscillators
          1. 6.16.3.5.1 INTOSC Characteristics
      4. 6.16.4  Flash Parameters
        1. 6.16.4.1 C29 Flash Parameters 
        2. 6.16.4.2 HSM Flash Parameters 
      5. 6.16.5  Memory Subsystem (MEMSS)
        1. 6.16.5.1 Introduction
        2. 6.16.5.2 Features
        3. 6.16.5.3 RAM Specifications
      6. 6.16.6  Debug/JTAG
        1. 6.16.6.1 JTAG Electrical Data and Timing
          1. 6.16.6.1.1 DEBUGSS Timing Requirements
          2. 6.16.6.1.2 DEBUGSS Switching Characteristics
          3. 6.16.6.1.3 JTAG Timing Diagram
          4. 6.16.6.1.4 SWD Timing Diagram
      7. 6.16.7  GPIO Electrical Data and Timing
        1. 6.16.7.1 GPIO – Output Timing
          1. 6.16.7.1.1 General-Purpose Output Switching Characteristics
          2. 6.16.7.1.2 General-Purpose Output Timing Diagram
        2. 6.16.7.2 GPIO – Input Timing
          1. 6.16.7.2.1 General-Purpose Input Timing Requirements
          2. 6.16.7.2.2 Sampling Mode
        3. 6.16.7.3 Sampling Window Width for Input Signals
      8. 6.16.8  Real-Time Direct Memory Access (RTDMA)
        1. 6.16.8.1 Introduction
          1. 6.16.8.1.1 Features
          2. 6.16.8.1.2 Block Diagram
      9. 6.16.9  Low-Power Modes
        1. 6.16.9.1 Clock-Gating Low-Power Modes
        2. 6.16.9.2 Low-Power Mode Wake-up Timing
          1. 6.16.9.2.1 IDLE Mode Timing Requirements
          2. 6.16.9.2.2 IDLE Mode Switching Characteristics
          3. 6.16.9.2.3 IDLE Entry and Exit Timing Diagram
          4. 6.16.9.2.4 STANDBY Mode Timing Requirements
          5. 6.16.9.2.5 STANDBY Mode Switching Characteristics
          6. 6.16.9.2.6 STANDBY Entry and Exit Timing Diagram
      10. 6.16.10 External Memory Interface (EMIF)
        1. 6.16.10.1 Asynchronous Memory Support
        2. 6.16.10.2 Synchronous DRAM Support
        3. 6.16.10.3 EMIF Electrical Data and Timing
          1. 6.16.10.3.1 EMIF Synchronous Memory Timing Requirements
          2. 6.16.10.3.2 EMIF Synchronous Memory Switching Characteristics
          3. 6.16.10.3.3 EMIF Synchronous Memory Timing Diagrams
          4. 6.16.10.3.4 EMIF Asynchronous Memory Timing Requirements
          5. 6.16.10.3.5 EMIF Asynchronous Memory Switching Characteristics
          6. 6.16.10.3.6 EMIF Asynchronous Memory Timing Diagrams
    17. 6.17 C29x Analog Peripherals
      1. 6.17.1 Analog Subsystem
        1. 6.17.1.1 Features
        2. 6.17.1.2 Block Diagram
        3. 6.17.1.3 Analog Pin Connections
      2. 6.17.2 Analog-to-Digital Converter (ADC)
        1. 6.17.2.1 ADC Configurability
          1. 6.17.2.1.1 Signal Mode
        2. 6.17.2.2 ADC Electrical Data and Timing
          1. 6.17.2.2.1  ADC Operating Conditions 12-bit Single-Ended
          2. 6.17.2.2.2  ADC Operating Conditions 12-bit Differential
          3. 6.17.2.2.3  ADC Operating Conditions 16-bit Single-Ended
          4. 6.17.2.2.4  ADC Operating Conditions 16-bit Differential
          5. 6.17.2.2.5  ADC Timing Requirements
          6. 6.17.2.2.6  ADC Characteristics 12-bit Single-Ended
          7. 6.17.2.2.7  ADC Characteristics 12-bit Differential
          8. 6.17.2.2.8  ADC Characteristics 16-bit Single-Ended
          9. 6.17.2.2.9  ADC Characteristics 16-bit Differential
          10. 6.17.2.2.10 ADC INL and DNL
          11. 6.17.2.2.11 ADC Performance Per Pin
          12. 6.17.2.2.12 ADC Input Models
          13. 6.17.2.2.13 ADC Timing Diagrams
      3. 6.17.3 Temperature Sensor
        1. 6.17.3.1 Temperature Sensor Electrical Data and Timing
          1. 6.17.3.1.1 Temperature Sensor Characteristics
      4. 6.17.4 Comparator Subsystem (CMPSS)
        1. 6.17.4.1 CMPSS Connectivity Diagram
        2. 6.17.4.2 Block Diagram
        3. 6.17.4.3 CMPSS Electrical Data and Timing
          1. 6.17.4.3.1 Comparator Electrical Characteristics
          2.        CMPSS Comparator Input Referred Offset and Hysteresis
          3. 6.17.4.3.2 CMPSS DAC Static Electrical Characteristics
          4. 6.17.4.3.3 CMPSS Illustrative Graphs
      5. 6.17.5 Buffered Digital-to-Analog Converter (DAC)
        1. 6.17.5.1 Buffered DAC Electrical Data and Timing
          1. 6.17.5.1.1 Buffered DAC Operating Conditions
          2. 6.17.5.1.2 Buffered DAC Electrical Characteristics
    18. 6.18 C29x Control Peripherals
      1. 6.18.1 Enhanced Capture (eCAP)
        1. 6.18.1.1 eCAP Block Diagram
        2. 6.18.1.2 eCAP Synchronization
        3. 6.18.1.3 eCAP Electrical Data and Timing
          1. 6.18.1.3.1 eCAP Timing Requirements
          2. 6.18.1.3.2 eCAP Switching Characteristics
      2. 6.18.2 High-Resolution Capture (HRCAP)
        1. 6.18.2.1 eCAP and HRCAP Block Diagram
        2. 6.18.2.2 HRCAP Electrical Data and Timing
          1. 6.18.2.2.1 HRCAP Switching Characteristics
          2. 6.18.2.2.2 HRCAP Figure and Graph
      3. 6.18.3 Enhanced Pulse Width Modulator (ePWM)
        1. 6.18.3.1 Control Peripherals Synchronization
        2. 6.18.3.2 ePWM Electrical Data and Timing
          1. 6.18.3.2.1 ePWM Timing Requirements
          2. 6.18.3.2.2 ePWM Switching Characteristics
          3. 6.18.3.2.3 Trip-Zone Input Timing
            1. 6.18.3.2.3.1 PWM Hi-Z Characteristics Timing Diagram
      4. 6.18.4 External ADC Start-of-Conversion Electrical Data and Timing
        1. 6.18.4.1 External ADC Start-of-Conversion Switching Characteristics
        2. 6.18.4.2 ADCSOCAO or ADCSOCBO Timing Diagram
      5. 6.18.5 High-Resolution Pulse Width Modulator (HRPWM)
        1. 6.18.5.1 HRPWM Electrical Data and Timing
          1. 6.18.5.1.1 High-Resolution PWM Characteristics
      6. 6.18.6 Enhanced Quadrature Encoder Pulse (eQEP)
        1. 6.18.6.1 eQEP Electrical Data and Timing
          1. 6.18.6.1.1 eQEP Timing Requirements
          2. 6.18.6.1.2 eQEP Switching Characteristics
      7. 6.18.7 Sigma-Delta Filter Module (SDFM)
        1. 6.18.7.1 SDFM Electrical Data and Timing
          1. 6.18.7.1.1 SDFM Electrical Data and Timing (Synchronized GPIO)
          2. 6.18.7.1.2 SDFM Electrical Data and Timing (Using ASYNC)
            1. 6.18.7.1.2.1 SDFM Timing Requirements When Using Asynchronous GPIO ASYNC Option
            2. 6.18.7.1.2.2 SDFM Timing Requirements When Using Synchronous GPIO SYNC Option
          3. 6.18.7.1.3 SDFM Timing Diagram
    19. 6.19 C29x Communications Peripherals
      1. 6.19.1 Modular Controller Area Network (MCAN)
      2. 6.19.2 Fast Serial Interface (FSI)
        1. 6.19.2.1 FSI Transmitter
          1. 6.19.2.1.1 FSITX Electrical Data and Timing
            1. 6.19.2.1.1.1 FSITX Switching Characteristics
            2. 6.19.2.1.1.2 FSITX Timings
        2. 6.19.2.2 FSI Receiver
          1. 6.19.2.2.1 FSIRX Electrical Data and Timing
            1. 6.19.2.2.1.1 FSIRX Timing Requirements
            2. 6.19.2.2.1.2 FSIRX Switching Characteristics
            3. 6.19.2.2.1.3 FSIRX Timings
        3. 6.19.2.3 FSI SPI Compatibility Mode
          1. 6.19.2.3.1 FSITX SPI Signaling Mode Electrical Data and Timing
            1. 6.19.2.3.1.1 FSITX SPI Signaling Mode Switching Characteristics
            2. 6.19.2.3.1.2 FSITX SPI Signaling Mode Timings
      3. 6.19.3 Inter-Integrated Circuit (I2C)
        1. 6.19.3.1 I2C Electrical Data and Timing
          1. 6.19.3.1.1 I2C Timing Requirements
          2. 6.19.3.1.2 I2C Switching Characteristics
          3. 6.19.3.1.3 I2C Timing Diagram
      4. 6.19.4 Power Management Bus (PMBus) Interface
        1. 6.19.4.1 PMBus Electrical Data and Timing
          1. 6.19.4.1.1 PMBus Electrical Characteristics
          2. 6.19.4.1.2 PMBus Fast Mode Switching Characteristics
          3. 6.19.4.1.3 PMBus Standard Mode Switching Characteristics
      5. 6.19.5 Serial Peripheral Interface (SPI)
        1. 6.19.5.1 SPI Controller Mode Timings
          1. 6.19.5.1.1 SPI Controller Mode Switching Characteristics Clock Phase 0
          2. 6.19.5.1.2 SPI Controller Mode Switching Characteristics Clock Phase 1
          3. 6.19.5.1.3 SPI Controller Mode Timing Requirements
          4. 6.19.5.1.4 SPI Controller Mode Timing Diagrams
        2. 6.19.5.2 SPI Peripheral Mode Timings
          1. 6.19.5.2.1 SPI Peripheral Mode Switching Characteristics
          2. 6.19.5.2.2 SPI Peripheral Mode Timing Requirements
          3. 6.19.5.2.3 SPI Peripheral Mode Timing Diagrams
      6. 6.19.6 Single Edge Nibble Transmission (SENT)
        1. 6.19.6.1 Introduction
        2. 6.19.6.2 Features
      7. 6.19.7 Local Interconnect Network (LIN)
      8. 6.19.8 EtherCAT SubordinateDevice Controller (ESC)
        1. 6.19.8.1 ESC Features
        2. 6.19.8.2 ESC Subsystem Integrated Features
        3. 6.19.8.3 EtherCAT IP Block Diagram
        4. 6.19.8.4 EtherCAT Electrical Data and Timing
          1. 6.19.8.4.1 EtherCAT Timing Requirements
          2. 6.19.8.4.2 EtherCAT Switching Characteristics
          3. 6.19.8.4.3 EtherCAT Timing Diagrams
      9. 6.19.9 Universal Asynchronous Receiver-Transmitter (UART)
  8. Detailed Description
    1. 7.1  Overview
    2. 7.2  Functional Block Diagram
    3. 7.3  Error Signaling Module (ESM_C29)
      1. 7.3.1 Introduction
      2. 7.3.2 ESM Subsystem
      3. 7.3.3 System ESM
    4. 7.4  Error Aggregator
      1. 7.4.1 Error Aggregator Modules
      2. 7.4.2 Error Aggregator Interface
    5. 7.5  Memory
      1. 7.5.1 C29x Memory Map
      2. 7.5.2 Flash Memory Map
        1. 7.5.2.1 Flash MAIN Region Address Map (F29H85x, 4MB)
        2. 7.5.2.2 Flash MAIN Region Address Map (F29H85x, 2MB)
        3. 7.5.2.3 Flash MAIN Region Address Map (F29P58x, 4MB)
        4. 7.5.2.4 Flash MAIN Region Address Map (F29P58x, F29P32x 2MB)
        5. 7.5.2.5 Flash Data Bank Address Map
        6. 7.5.2.6 Flash BANKMGMT Region Address Map
        7. 7.5.2.7 Flash SECCFG Region Address Map
      3. 7.5.3 Peripheral Registers Memory Map
    6. 7.6  Identification
    7. 7.7  Boot ROM
      1. 7.7.1 Device Boot Sequence
      2. 7.7.2 Device Boot Modes
        1. 7.7.2.1 Default Boot Modes
        2. 7.7.2.2 Custom Boot Modes
      3. 7.7.3 Device Boot Configurations
        1. 7.7.3.1 Configuring Boot Mode Pins
        2. 7.7.3.2 Configuring Boot Mode Table Options
      4. 7.7.4 Device Boot Flow Diagrams
        1. 7.7.4.1 Device Boot Flow
        2. 7.7.4.2 CPU1 Boot Flow
        3. 7.7.4.3 Emulation Boot Flow
        4. 7.7.4.4 Stand-alone Boot Flow
      5. 7.7.5 GPIO Assignments
    8. 7.8  Security Modules and Cryptographic Accelerators
      1. 7.8.1 Security Modules
        1. 7.8.1.1 Hardware Security Module (HSM)
        2. 7.8.1.2 Cryptographic Accelerators
      2. 7.8.2 Safety and Security Unit (SSU)
        1. 7.8.2.1 System View
    9. 7.9  C29x Subsystem
      1. 7.9.1 C29 CPU Architecture
      2. 7.9.2 Peripheral Interrupt Priority and Expansion (PIPE)
        1. 7.9.2.1 Introduction
          1. 7.9.2.1.1 Features
          2. 7.9.2.1.2 Interrupt Concepts
        2. 7.9.2.2 Interrupt Controller Architecture
          1. 7.9.2.2.1 Dynamic Priority Arbitration Block
          2. 7.9.2.2.2 Post Processing Block
          3. 7.9.2.2.3 Memory-Mapped Registers
        3. 7.9.2.3 Interrupt Propagation
      3. 7.9.3 Data Logging and Trace (DLT)
        1. 7.9.3.1 Introduction
          1. 7.9.3.1.1 Features
            1. 7.9.3.1.1.1 Block Diagram
      4. 7.9.4 Waveform Analyzer Diagnostics (WADI)
        1. 7.9.4.1 WADI Overview
          1. 7.9.4.1.1 Features
          2. 7.9.4.1.2 Block Diagram
          3. 7.9.4.1.3 Description
      5. 7.9.5 Embedded Real-Time Analysis and Diagnostic (ERAD)
      6. 7.9.6 Inter-Processor Communications (IPC)
        1. 7.9.6.1 Introduction
      7. 7.9.7 Watchdog
      8. 7.9.8 Dual-Clock Comparator (DCC)
        1. 7.9.8.1 Features
        2. 7.9.8.2 Mapping of DCCx Clock Source Inputs
      9. 7.9.9 Configurable Logic Block (CLB)
    10. 7.10 Lockstep Compare Module (LCM)
  9. Applications, Implementation, and Layout
    1. 8.1 Reference Design
  10. Device and Documentation Support
    1. 9.1 Device Nomenclature
    2. 9.2 Markings
    3. 9.3 Tools and Software
    4. 9.4 Documentation Support
    5. 9.5 Support Resources
    6. 9.6 Trademarks
    7. 9.7 Electrostatic Discharge Caution
    8. 9.8 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Packaging Information
    2.     TRAY

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • PZS|100
  • PTS|176
  • RFS|144
  • ZEX|256
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Hardware Security Module (HSM)

The Hardware Security Module (HSM) is a self-contained subsystem within the device that provides security and cryptographic functions. The host C29x subsystem interfaces with the HSM subsystem to perform the cryptographic operations required for code authentication, secure boot, secure firmware upgrades and encrypted run-time communications. A high-level view of the various subsystems in this device, with the HSM subsystem highlighted, is shown in Figure 7-12.

F29H859TU-Q1 F29H850TU Device High-Level Block
                    Diagram Figure 7-12 Device High-Level Block Diagram

At the center of the HSM is an Arm® Cortex®-M4 CPU running at 100MHz, with embedded SRAM, ROM, and up to 512KB of Flash memory. The Real-Time DMA (RTDMA) module enables fast data transfers between the HSM CPU and SRAM, HSM and application Flash memory banks, secure mailbox, and cryptographic engines.

The Security Manager module hosts the root-of-trust keys, defines the secure access mechanisms, controls the debug firewalls, and performs the security override sequences to establish protection of security assets if debug or failure-analysis operation is required.

The HSM includes a set of accelerator engines for executing cryptographic algorithms. These engines enable fast execution of symmetric encryption algorithms, hash functions, asymmetric encryption algorithms for public key infrastructure, and a true random number generator (TRNG). The Data Transform and Hashing Engine (DTHE) interfaces between the CPU and the cryptographic accelerators, providing interrupt and RTDMA trigger management and essential functions such as CRC and checksum computation.

In addition, the HSM provides peripheral modules to aid various security functions: timers, a real-time counter, a watchdog, DCC for clock monitoring, and ESM for error handling.

Communication between the HSM and the host application cores happens over a secure mailbox interface. The HSM controls various secure firewalls in the device, including the secure mailbox, cryptographic engines, shared RAM, and device Flash memory.

While the Hardware Security Module (HSM) provides cryptographic services and governs authentication, secure boot, and secure key/code provisioning, the SSU is responsible for run-time safety and security protections in application CPU subsystems.

Table 7-41 SSU versus HSM Complementary Features
Responsibility SSU or HSM
Safety and security partitioning between application software components SSU only
Allowing peripherals to be assigned to different software components SSU only
Governs application Flash bank programming SSU only
Global JTAG Lock SSU and HSM(1)
Lower level (ZONE) governance of secure debug of application code SSU and HSM
Higher level (CPU) governance of secure debug of application code HSM only
Governance of secure debug of HSM CPU HSM only
Cryptographic services (encode/decode, random numbers, authentication, key management, and so on) HSM only
Secure key storage HSM only
Secure Boot HSM only
Governance of HSM bank programming HSM only
When HSM is present, the HSM supersedes SSU for this function.