SPRSP93B November   2024  – September 2025 F29H850TU , F29H859TU-Q1

ADVMIX  

  1.   1
  2. Features
  3. Applications
  4. Description
    1. 3.1 Functional Block Diagram
  5. Device Comparison
    1. 4.1 Related Products
  6. Pin Configuration and Functions
    1. 5.1 Pin Diagrams
    2. 5.2 Pin Attributes (F29H85x and F29P58x)
    3. 5.3 Pin Attributes (F29P32x)
    4. 5.4 Signal Descriptions
      1. 5.4.1 Analog Signals
      2. 5.4.2 Digital Signals
      3. 5.4.3 Test, JTAG, and Reset
    5. 5.5 Pins With Internal Pullup and Pulldown
    6. 5.6 Pin Multiplexing
      1. 5.6.1 GPIO Muxed Pins
    7. 5.7 Connections for Unused Pins
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  F29H85x ESD Ratings – Commercial
    3. 6.3  F29H85x ESD Ratings – Automotive
    4. 6.4  F29P58x ESD Ratings – Commercial
    5. 6.5  F29P58x ESD Ratings – Automotive
    6. 6.6  F29P32x ESD Ratings – Automotive
    7. 6.7  Recommended Operating Conditions
    8. 6.8  Power Consumption Summary
      1. 6.8.1 System Current Consumption VREG Disable - External Supply
      2. 6.8.2 System Current Consumption VREG Enabled
      3. 6.8.3 Operating Mode Test Description
      4. 6.8.4 Reducing Current Consumption
        1. 6.8.4.1 Typical Current Reduction per Disabled Peripheral
    9. 6.9  Electrical Characteristics
    10. 6.10 Special Considerations for 5V Fail-Safe Pins
    11. 6.11 Thermal Resistance Characteristics for ZEX Package
    12. 6.12 Thermal Resistance Characteristics for PTS Package
    13. 6.13 Thermal Resistance Characteristics for RFS Package
    14. 6.14 Thermal Resistance Characteristics for PZS Package
    15. 6.15 Thermal Design Considerations
    16. 6.16 System
      1. 6.16.1  Power Management Module (PMM)
        1. 6.16.1.1 Introduction
        2. 6.16.1.2 Overview
          1. 6.16.1.2.1 Power Rail Monitors
            1. 6.16.1.2.1.1 I/O POR (Power-On Reset) Monitor
            2. 6.16.1.2.1.2 I/O BOR (Brown-Out Reset) Monitor
            3. 6.16.1.2.1.3 VDD POR (Power-On Reset) Monitor
          2. 6.16.1.2.2 External Supervisor Usage
          3. 6.16.1.2.3 Delay Blocks
          4. 6.16.1.2.4 Internal VDD LDO Voltage Regulator (VREG)
          5. 6.16.1.2.5 VREGENZ
        3. 6.16.1.3 External Components
          1. 6.16.1.3.1 Decoupling Capacitors
            1. 6.16.1.3.1.1 VDDIO Decoupling
            2. 6.16.1.3.1.2 VDD Decoupling
        4. 6.16.1.4 Power Sequencing
          1. 6.16.1.4.1 Supply Pins Ganging
          2. 6.16.1.4.2 Signal Pins Power Sequence
          3. 6.16.1.4.3 Supply Pins Power Sequence
            1. 6.16.1.4.3.1 External VREG/VDD Mode Sequence
            2. 6.16.1.4.3.2 Internal VREG/VDD Mode Sequence
            3. 6.16.1.4.3.3 Supply Sequencing Summary and Effects of Violations
            4. 6.16.1.4.3.4 Supply Slew Rate
        5. 6.16.1.5 Power Management Module Electrical Data and Timing
          1. 6.16.1.5.1 Power Management Module Operating Conditions
          2. 6.16.1.5.2 Power Management Module Characteristics
      2. 6.16.2  Reset Timing
        1. 6.16.2.1 Reset Sources
        2. 6.16.2.2 Reset Electrical Data and Timing
          1. 6.16.2.2.1 Reset XRSn Timing Requirements
          2. 6.16.2.2.2 Reset XRSn Switching Characteristics
          3. 6.16.2.2.3 Reset Timing Diagrams
      3. 6.16.3  Clock Specifications
        1. 6.16.3.1 Clock Sources
        2. 6.16.3.2 Clock Frequencies, Requirements, and Characteristics
          1. 6.16.3.2.1 Input Clock Frequency and Timing Requirements, PLL Lock Times
            1. 6.16.3.2.1.1 Input Clock Frequency
            2. 6.16.3.2.1.2 XTAL Oscillator Characteristics
            3. 6.16.3.2.1.3 X1 Input Level Characteristics When Using an External Clock Source Not a Crystal
            4. 6.16.3.2.1.4 X1 Timing Requirements
            5. 6.16.3.2.1.5 AUXCLKIN Timing Requirements
            6. 6.16.3.2.1.6 APLL Characteristics
            7. 6.16.3.2.1.7 XCLKOUT Switching Characteristics PLL Bypassed or Enabled
            8. 6.16.3.2.1.8 Internal Clock Frequencies
        3. 6.16.3.3 Input Clocks
        4. 6.16.3.4 XTAL Oscillator
          1. 6.16.3.4.1 Introduction
          2. 6.16.3.4.2 Overview
            1. 6.16.3.4.2.1 Electrical Oscillator
              1. 6.16.3.4.2.1.1 Modes of Operation
                1. 6.16.3.4.2.1.1.1 Crystal Mode of Operation
                2. 6.16.3.4.2.1.1.2 Single-Ended Mode of Operation
              2. 6.16.3.4.2.1.2 XTAL Output on XCLKOUT
            2. 6.16.3.4.2.2 Quartz Crystal
            3. 6.16.3.4.2.3 GPIO Modes of Operation
          3. 6.16.3.4.3 Functional Operation
            1. 6.16.3.4.3.1 ESR – Effective Series Resistance
            2. 6.16.3.4.3.2 Rneg – Negative Resistance
            3. 6.16.3.4.3.3 Start-up Time
            4. 6.16.3.4.3.4 DL – Drive Level
          4. 6.16.3.4.4 How to Choose a Crystal
          5. 6.16.3.4.5 Testing
          6. 6.16.3.4.6 Common Problems and Debug Tips
          7. 6.16.3.4.7 Crystal Oscillator Specifications
            1. 6.16.3.4.7.1 Crystal Equivalent Series Resistance (ESR) Requirements
            2. 6.16.3.4.7.2 Crystal Oscillator Parameters
            3. 6.16.3.4.7.3 Crystal Oscillator Electrical Characteristics
        5. 6.16.3.5 Internal Oscillators
          1. 6.16.3.5.1 INTOSC Characteristics
      4. 6.16.4  Flash Parameters
        1. 6.16.4.1 C29 Flash Parameters 
        2. 6.16.4.2 HSM Flash Parameters 
      5. 6.16.5  Memory Subsystem (MEMSS)
        1. 6.16.5.1 Introduction
        2. 6.16.5.2 Features
        3. 6.16.5.3 RAM Specifications
      6. 6.16.6  Debug/JTAG
        1. 6.16.6.1 JTAG Electrical Data and Timing
          1. 6.16.6.1.1 DEBUGSS Timing Requirements
          2. 6.16.6.1.2 DEBUGSS Switching Characteristics
          3. 6.16.6.1.3 JTAG Timing Diagram
          4. 6.16.6.1.4 SWD Timing Diagram
      7. 6.16.7  GPIO Electrical Data and Timing
        1. 6.16.7.1 GPIO – Output Timing
          1. 6.16.7.1.1 General-Purpose Output Switching Characteristics
          2. 6.16.7.1.2 General-Purpose Output Timing Diagram
        2. 6.16.7.2 GPIO – Input Timing
          1. 6.16.7.2.1 General-Purpose Input Timing Requirements
          2. 6.16.7.2.2 Sampling Mode
        3. 6.16.7.3 Sampling Window Width for Input Signals
      8. 6.16.8  Real-Time Direct Memory Access (RTDMA)
        1. 6.16.8.1 Introduction
          1. 6.16.8.1.1 Features
          2. 6.16.8.1.2 Block Diagram
      9. 6.16.9  Low-Power Modes
        1. 6.16.9.1 Clock-Gating Low-Power Modes
        2. 6.16.9.2 Low-Power Mode Wake-up Timing
          1. 6.16.9.2.1 IDLE Mode Timing Requirements
          2. 6.16.9.2.2 IDLE Mode Switching Characteristics
          3. 6.16.9.2.3 IDLE Entry and Exit Timing Diagram
          4. 6.16.9.2.4 STANDBY Mode Timing Requirements
          5. 6.16.9.2.5 STANDBY Mode Switching Characteristics
          6. 6.16.9.2.6 STANDBY Entry and Exit Timing Diagram
      10. 6.16.10 External Memory Interface (EMIF)
        1. 6.16.10.1 Asynchronous Memory Support
        2. 6.16.10.2 Synchronous DRAM Support
        3. 6.16.10.3 EMIF Electrical Data and Timing
          1. 6.16.10.3.1 EMIF Synchronous Memory Timing Requirements
          2. 6.16.10.3.2 EMIF Synchronous Memory Switching Characteristics
          3. 6.16.10.3.3 EMIF Synchronous Memory Timing Diagrams
          4. 6.16.10.3.4 EMIF Asynchronous Memory Timing Requirements
          5. 6.16.10.3.5 EMIF Asynchronous Memory Switching Characteristics
          6. 6.16.10.3.6 EMIF Asynchronous Memory Timing Diagrams
    17. 6.17 C29x Analog Peripherals
      1. 6.17.1 Analog Subsystem
        1. 6.17.1.1 Features
        2. 6.17.1.2 Block Diagram
        3. 6.17.1.3 Analog Pin Connections
      2. 6.17.2 Analog-to-Digital Converter (ADC)
        1. 6.17.2.1 ADC Configurability
          1. 6.17.2.1.1 Signal Mode
        2. 6.17.2.2 ADC Electrical Data and Timing
          1. 6.17.2.2.1  ADC Operating Conditions 12-bit Single-Ended
          2. 6.17.2.2.2  ADC Operating Conditions 12-bit Differential
          3. 6.17.2.2.3  ADC Operating Conditions 16-bit Single-Ended
          4. 6.17.2.2.4  ADC Operating Conditions 16-bit Differential
          5. 6.17.2.2.5  ADC Timing Requirements
          6. 6.17.2.2.6  ADC Characteristics 12-bit Single-Ended
          7. 6.17.2.2.7  ADC Characteristics 12-bit Differential
          8. 6.17.2.2.8  ADC Characteristics 16-bit Single-Ended
          9. 6.17.2.2.9  ADC Characteristics 16-bit Differential
          10. 6.17.2.2.10 ADC INL and DNL
          11. 6.17.2.2.11 ADC Performance Per Pin
          12. 6.17.2.2.12 ADC Input Models
          13. 6.17.2.2.13 ADC Timing Diagrams
      3. 6.17.3 Temperature Sensor
        1. 6.17.3.1 Temperature Sensor Electrical Data and Timing
          1. 6.17.3.1.1 Temperature Sensor Characteristics
      4. 6.17.4 Comparator Subsystem (CMPSS)
        1. 6.17.4.1 CMPSS Connectivity Diagram
        2. 6.17.4.2 Block Diagram
        3. 6.17.4.3 CMPSS Electrical Data and Timing
          1. 6.17.4.3.1 Comparator Electrical Characteristics
          2.        CMPSS Comparator Input Referred Offset and Hysteresis
          3. 6.17.4.3.2 CMPSS DAC Static Electrical Characteristics
          4. 6.17.4.3.3 CMPSS Illustrative Graphs
      5. 6.17.5 Buffered Digital-to-Analog Converter (DAC)
        1. 6.17.5.1 Buffered DAC Electrical Data and Timing
          1. 6.17.5.1.1 Buffered DAC Operating Conditions
          2. 6.17.5.1.2 Buffered DAC Electrical Characteristics
    18. 6.18 C29x Control Peripherals
      1. 6.18.1 Enhanced Capture (eCAP)
        1. 6.18.1.1 eCAP Block Diagram
        2. 6.18.1.2 eCAP Synchronization
        3. 6.18.1.3 eCAP Electrical Data and Timing
          1. 6.18.1.3.1 eCAP Timing Requirements
          2. 6.18.1.3.2 eCAP Switching Characteristics
      2. 6.18.2 High-Resolution Capture (HRCAP)
        1. 6.18.2.1 eCAP and HRCAP Block Diagram
        2. 6.18.2.2 HRCAP Electrical Data and Timing
          1. 6.18.2.2.1 HRCAP Switching Characteristics
          2. 6.18.2.2.2 HRCAP Figure and Graph
      3. 6.18.3 Enhanced Pulse Width Modulator (ePWM)
        1. 6.18.3.1 Control Peripherals Synchronization
        2. 6.18.3.2 ePWM Electrical Data and Timing
          1. 6.18.3.2.1 ePWM Timing Requirements
          2. 6.18.3.2.2 ePWM Switching Characteristics
          3. 6.18.3.2.3 Trip-Zone Input Timing
            1. 6.18.3.2.3.1 PWM Hi-Z Characteristics Timing Diagram
      4. 6.18.4 External ADC Start-of-Conversion Electrical Data and Timing
        1. 6.18.4.1 External ADC Start-of-Conversion Switching Characteristics
        2. 6.18.4.2 ADCSOCAO or ADCSOCBO Timing Diagram
      5. 6.18.5 High-Resolution Pulse Width Modulator (HRPWM)
        1. 6.18.5.1 HRPWM Electrical Data and Timing
          1. 6.18.5.1.1 High-Resolution PWM Characteristics
      6. 6.18.6 Enhanced Quadrature Encoder Pulse (eQEP)
        1. 6.18.6.1 eQEP Electrical Data and Timing
          1. 6.18.6.1.1 eQEP Timing Requirements
          2. 6.18.6.1.2 eQEP Switching Characteristics
      7. 6.18.7 Sigma-Delta Filter Module (SDFM)
        1. 6.18.7.1 SDFM Electrical Data and Timing
          1. 6.18.7.1.1 SDFM Electrical Data and Timing (Synchronized GPIO)
          2. 6.18.7.1.2 SDFM Electrical Data and Timing (Using ASYNC)
            1. 6.18.7.1.2.1 SDFM Timing Requirements When Using Asynchronous GPIO ASYNC Option
            2. 6.18.7.1.2.2 SDFM Timing Requirements When Using Synchronous GPIO SYNC Option
          3. 6.18.7.1.3 SDFM Timing Diagram
    19. 6.19 C29x Communications Peripherals
      1. 6.19.1 Modular Controller Area Network (MCAN)
      2. 6.19.2 Fast Serial Interface (FSI)
        1. 6.19.2.1 FSI Transmitter
          1. 6.19.2.1.1 FSITX Electrical Data and Timing
            1. 6.19.2.1.1.1 FSITX Switching Characteristics
            2. 6.19.2.1.1.2 FSITX Timings
        2. 6.19.2.2 FSI Receiver
          1. 6.19.2.2.1 FSIRX Electrical Data and Timing
            1. 6.19.2.2.1.1 FSIRX Timing Requirements
            2. 6.19.2.2.1.2 FSIRX Switching Characteristics
            3. 6.19.2.2.1.3 FSIRX Timings
        3. 6.19.2.3 FSI SPI Compatibility Mode
          1. 6.19.2.3.1 FSITX SPI Signaling Mode Electrical Data and Timing
            1. 6.19.2.3.1.1 FSITX SPI Signaling Mode Switching Characteristics
            2. 6.19.2.3.1.2 FSITX SPI Signaling Mode Timings
      3. 6.19.3 Inter-Integrated Circuit (I2C)
        1. 6.19.3.1 I2C Electrical Data and Timing
          1. 6.19.3.1.1 I2C Timing Requirements
          2. 6.19.3.1.2 I2C Switching Characteristics
          3. 6.19.3.1.3 I2C Timing Diagram
      4. 6.19.4 Power Management Bus (PMBus) Interface
        1. 6.19.4.1 PMBus Electrical Data and Timing
          1. 6.19.4.1.1 PMBus Electrical Characteristics
          2. 6.19.4.1.2 PMBus Fast Mode Switching Characteristics
          3. 6.19.4.1.3 PMBus Standard Mode Switching Characteristics
      5. 6.19.5 Serial Peripheral Interface (SPI)
        1. 6.19.5.1 SPI Controller Mode Timings
          1. 6.19.5.1.1 SPI Controller Mode Switching Characteristics Clock Phase 0
          2. 6.19.5.1.2 SPI Controller Mode Switching Characteristics Clock Phase 1
          3. 6.19.5.1.3 SPI Controller Mode Timing Requirements
          4. 6.19.5.1.4 SPI Controller Mode Timing Diagrams
        2. 6.19.5.2 SPI Peripheral Mode Timings
          1. 6.19.5.2.1 SPI Peripheral Mode Switching Characteristics
          2. 6.19.5.2.2 SPI Peripheral Mode Timing Requirements
          3. 6.19.5.2.3 SPI Peripheral Mode Timing Diagrams
      6. 6.19.6 Single Edge Nibble Transmission (SENT)
        1. 6.19.6.1 Introduction
        2. 6.19.6.2 Features
      7. 6.19.7 Local Interconnect Network (LIN)
      8. 6.19.8 EtherCAT SubordinateDevice Controller (ESC)
        1. 6.19.8.1 ESC Features
        2. 6.19.8.2 ESC Subsystem Integrated Features
        3. 6.19.8.3 EtherCAT IP Block Diagram
        4. 6.19.8.4 EtherCAT Electrical Data and Timing
          1. 6.19.8.4.1 EtherCAT Timing Requirements
          2. 6.19.8.4.2 EtherCAT Switching Characteristics
          3. 6.19.8.4.3 EtherCAT Timing Diagrams
      9. 6.19.9 Universal Asynchronous Receiver-Transmitter (UART)
  8. Detailed Description
    1. 7.1  Overview
    2. 7.2  Functional Block Diagram
    3. 7.3  Error Signaling Module (ESM_C29)
      1. 7.3.1 Introduction
      2. 7.3.2 ESM Subsystem
      3. 7.3.3 System ESM
    4. 7.4  Error Aggregator
      1. 7.4.1 Error Aggregator Modules
      2. 7.4.2 Error Aggregator Interface
    5. 7.5  Memory
      1. 7.5.1 C29x Memory Map
      2. 7.5.2 Flash Memory Map
        1. 7.5.2.1 Flash MAIN Region Address Map (F29H85x, 4MB)
        2. 7.5.2.2 Flash MAIN Region Address Map (F29H85x, 2MB)
        3. 7.5.2.3 Flash MAIN Region Address Map (F29P58x, 4MB)
        4. 7.5.2.4 Flash MAIN Region Address Map (F29P58x, F29P32x 2MB)
        5. 7.5.2.5 Flash Data Bank Address Map
        6. 7.5.2.6 Flash BANKMGMT Region Address Map
        7. 7.5.2.7 Flash SECCFG Region Address Map
      3. 7.5.3 Peripheral Registers Memory Map
    6. 7.6  Identification
    7. 7.7  Boot ROM
      1. 7.7.1 Device Boot Sequence
      2. 7.7.2 Device Boot Modes
        1. 7.7.2.1 Default Boot Modes
        2. 7.7.2.2 Custom Boot Modes
      3. 7.7.3 Device Boot Configurations
        1. 7.7.3.1 Configuring Boot Mode Pins
        2. 7.7.3.2 Configuring Boot Mode Table Options
      4. 7.7.4 Device Boot Flow Diagrams
        1. 7.7.4.1 Device Boot Flow
        2. 7.7.4.2 CPU1 Boot Flow
        3. 7.7.4.3 Emulation Boot Flow
        4. 7.7.4.4 Stand-alone Boot Flow
      5. 7.7.5 GPIO Assignments
    8. 7.8  Security Modules and Cryptographic Accelerators
      1. 7.8.1 Security Modules
        1. 7.8.1.1 Hardware Security Module (HSM)
        2. 7.8.1.2 Cryptographic Accelerators
      2. 7.8.2 Safety and Security Unit (SSU)
        1. 7.8.2.1 System View
    9. 7.9  C29x Subsystem
      1. 7.9.1 C29 CPU Architecture
      2. 7.9.2 Peripheral Interrupt Priority and Expansion (PIPE)
        1. 7.9.2.1 Introduction
          1. 7.9.2.1.1 Features
          2. 7.9.2.1.2 Interrupt Concepts
        2. 7.9.2.2 Interrupt Controller Architecture
          1. 7.9.2.2.1 Dynamic Priority Arbitration Block
          2. 7.9.2.2.2 Post Processing Block
          3. 7.9.2.2.3 Memory-Mapped Registers
        3. 7.9.2.3 Interrupt Propagation
      3. 7.9.3 Data Logging and Trace (DLT)
        1. 7.9.3.1 Introduction
          1. 7.9.3.1.1 Features
            1. 7.9.3.1.1.1 Block Diagram
      4. 7.9.4 Waveform Analyzer Diagnostics (WADI)
        1. 7.9.4.1 WADI Overview
          1. 7.9.4.1.1 Features
          2. 7.9.4.1.2 Block Diagram
          3. 7.9.4.1.3 Description
      5. 7.9.5 Embedded Real-Time Analysis and Diagnostic (ERAD)
      6. 7.9.6 Inter-Processor Communications (IPC)
        1. 7.9.6.1 Introduction
      7. 7.9.7 Watchdog
      8. 7.9.8 Dual-Clock Comparator (DCC)
        1. 7.9.8.1 Features
        2. 7.9.8.2 Mapping of DCCx Clock Source Inputs
      9. 7.9.9 Configurable Logic Block (CLB)
    10. 7.10 Lockstep Compare Module (LCM)
  9. Applications, Implementation, and Layout
    1. 8.1 Reference Design
  10. Device and Documentation Support
    1. 9.1 Device Nomenclature
    2. 9.2 Markings
    3. 9.3 Tools and Software
    4. 9.4 Documentation Support
    5. 9.5 Support Resources
    6. 9.6 Trademarks
    7. 9.7 Electrostatic Discharge Caution
    8. 9.8 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Packaging Information
    2.     TRAY

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • PZS|100
  • PTS|176
  • RFS|144
  • ZEX|256
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Description

The F29H85x, F29P58x, and F29P32x are members of the C2000™ real-time microcontroller family of scalable, ultra-low latency MCUs designed for efficiency in power electronics, motor control, and beyond, including but not limited to: high power density, high switching frequencies, and supporting the use of GaN and SiC technologies. The F29 product families feature the next-generation C29 CPU core, leading the industry with 2x performance from the previous-generation C28 CPU core. The C29 core also supports byte-addressing, with data types fully compatible with other popular CPU architectures, including the Arm® architecture, enabling a smooth migration for customers looking to go to market quickly. For more information, see The C29 CPU – Unrivaled Real-Time Performance with Optimized Architecture on C2000™ MCUs technical white paper.

These include such applications as:

The real-time control subsystem has up to three 200MHz C29x CPU cores (400MIPS per core, up to 1200MIPS on F29H85x). Due to the C29 CPU architecture and tightly coupled peripherals (PWM, ADC, CMPSS), we see better performance with a 200MHz C29 core versus our competition running at higher CPU clock speed for certain applications – backed by customer benchmarks.

Many features are included to support a system-level ASIL D functional safety solution. The C29x CPU1 and CPU2 cores can be put in lockstep for detection of permanent and transient faults. Logic Power-On Self-Test (LPOST) and Memory Power-On Self-Test (MPOST) provide start-up detection of latent faults. Safe interconnects provide fault detection between the CPU and the peripherals. The ADC safety checker compares ADC conversion results from multiple ADC modules without additional CPU cycles. The Waveform Analyzer and Diagnostic (WADI) can monitor multiple signals for proper operation and take action to ensure a safe state is maintained. The device architecture features a Safe Interconnect (SIC) for end-to-end code and data safety, with CPU-based ECC protection for all memories and peripheral endpoints.

Hardware Security Manager (HSM) provides EVITA-full security support. Features include Secure Boot, secure storage and keyring support, secure debug authentication, and cryptographic accelerator engines. The HSM enables secure key and code provisioning in untrusted factory environments, and supports Firmware-Over-The-Air updates of HSM and host application firmware, with A/B swap capability and rollback control.

SSU (Safety and Security unit) enables superior run-time safety and security features. This feature can be used create safety isolation (Freedom From Interference) among the threads running on same CPU or different CPUs. The SSU features a context-sensitive MPU mechanism that automatically switches access permissions in hardware based on currently executing thread or task. This eliminates software overhead, enabling real-time code performance without compromising system safety. The SSU provides multi-user debug authentication, and also supports Live Firmware Update (LFU) and FOTA fpr application firmware updates with A/B swap and rollback control. For more information, see the Implementing Run-Time Safety and Security With the C29x Safety and Security Unit Application Note.

High-performance analog blocks are tightly integrated with the processing and control units to provide optimal real-time signal chain performance. Two 16-bit Analog-to-Digital Converters (ADC) and three 12-bit ADCs have up to 80 analog channels as well as an integrated post-processing block and hardware oversampling. Two 12-bit buffered DACs and twenty-four comparator channels are available.

Thirty-six frequency-independent PWMs, all with high-resolution capability, enable control of multiple power stages, from 3-phase inverters to advanced multilevel power topologies. The PWMs have been enhanced with Minimum Dead-Band Logic (MINDL), Diode Emulation (DE), and Illegal Combo Logic (ICL) features.

The Configurable Logic Block (CLB) allows the user to add custom logic and potentially integrateFPGA-like functions into the C2000 real-time MCU.

An EtherCAT SubDevice Controller and other industry-standard protocols like CAN FD are available on this device. The Fast Serial Interface (FSI) enables up to 200Mbps of robust communications across an isolation boundary.

Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check out The Essential Guide for Developing With C2000™ Real-Time Microcontrollers and visit the C2000 real-time microcontrollers page.

The Getting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guide covers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered.

Ready to get started? Check out the F29H85X-SOM-EVM evaluation board, and download the F29-SDK Foundational Software Development Kit (SDK) for F29 real-time MCUs.

Package Information
PART NUMBER PACKAGE(1) PACKAGE SIZE(2) BODY SIZE (NOM) PITCH
F29H85xTxx ZEX (nFBGA, 256) 13mm × 13mm 13mm × 13mm 0.8mm
PTS (HTQFP, 176) 22mm × 22mm 20mm × 20mm 0.4mm
RFS (HTQFP, 144) 18mm × 18mm 16mm × 16mm 0.4mm
PZS (HTQFP, 100) 14mm × 14mm 12mm × 12mm 0.4mm
F29H85xDxx ZEX (nFBGA, 256) 13mm × 13mm 13mm × 13mm 0.8mm
PTS (HTQFP, 176) 22mm × 22mm 20mm × 20mm 0.4mm
RFS (HTQFP, 144) 18mm × 18mm 16mm × 16mm 0.4mm
PZS (HTQFP, 100) 14mm × 14mm 12mm × 12mm 0.4mm
F29P58xDxx ZEX (nFBGA, 256) 13mm × 13mm 13mm × 13mm 0.8mm
PTS (HTQFP, 176) 22mm × 22mm 20mm × 20mm 0.4mm
RFS (HTQFP, 144) 18mm × 18mm 16mm × 16mm 0.4mm
PZS (HTQFP, 100) 14mm × 14mm 12mm × 12mm 0.4mm
F29P329Sxx(3) RFS (HTQFP, 144) 18mm × 18mm 16mm × 16mm 0.4mm
PZS (HTQFP, 100) 14mm × 14mm 12mm × 12mm 0.4mm
For more information, see the Mechanical, Packaging, and Orderable Information section.
The package size (length × width) is a nominal value and includes pins, where applicable.
Preview information (not Advance Information).
Device Information
PART NUMBER(1) CPU FREQUENCY FLASH ADC SECURE BOOT EMIF
ETHERCAT
F29H85xTU9 CPU1
CPU2
CPU3
200MHz 4MB 2 - 16-bit/12-bit
3 - 12-bit
Yes Yes
F29H85xTU8
F29H85xTM8 2MB
F29H85xDU7 CPU1
CPU3
200MHz 4MB 2 - 16-bit/12-bit
3 - 12-bit
Yes Yes
F29H85xDU6
F29H85xDM7 2MB Yes
F29H85xDM6
F29H85xDM4 No
F29H85xDM3 Yes
F29P58xDU5 CPU1
CPU2
200MHz 4MB 2 - 16-bit/12-bit
3 - 12-bit
Yes
F29P58xDM5 2MB
F29P329SM2(2) CPU1
CPU2
Fixed Lockstep
200MHz 2MB 4 - 12-bit
F29P329SM1(2) 1MB 3 - 12-bit
F29P329SJ1(2)
For more information on these devices, see the Device Comparison table.
Preview information (not Advance Information).