SNVSCF4 July   2025 LM25139-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
    1. 4.1 Wettable Flanks
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings 
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  Input Voltage Range (VIN )
      2. 6.3.2  High-Voltage Bias Supply Regulator (VCC)
      3. 6.3.3  Precision Enable (EN)
      4. 6.3.4  Power-Good Monitor (PG)
      5. 6.3.5  Switching Frequency (RT)
      6. 6.3.6  Dual Random Spread Spectrum (DRSS)
      7. 6.3.7  Soft Start
      8. 6.3.8  Output Voltage Setpoint (FB)
      9. 6.3.9  Minimum Controllable On Time
      10. 6.3.10 Error Amplifier and PWM Comparator (FB)
      11. 6.3.11 Slope Compensation
      12. 6.3.12 Inductor Current Sense (ISNS, VOUT)
        1. 6.3.12.1 Shunt Current Sensing
        2. 6.3.12.2 Inductor DCR Current Sensing
        3. 6.3.12.3 Hiccup-Mode Current Limiting
    4. 6.4 Device Functional Modes
      1. 6.4.1 Sleep Mode
      2. 6.4.2 Forced PWM and Synchronization (FPWM/SYNC)
      3. 6.4.3 Thermal Shutdown
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Power Train Components
        1. 7.1.1.1 Buck Inductor
        2. 7.1.1.2 Output Capacitors
        3. 7.1.1.3 Input Capacitors
        4. 7.1.1.4 Power MOSFETs
        5. 7.1.1.5 EMI Filter
      2. 7.1.2 Error Amplifier and Compensation
    2. 7.2 Typical Applications
      1. 7.2.1 Design 1 – High Efficiency 2.2MHz Synchronous Buck Regulator
        1. 7.2.1.1 Design Requirements
        2. 7.2.1.2 Detailed Design Procedure
          1. 7.2.1.2.1 Custom Design With WEBENCH® Tools
          2. 7.2.1.2.2 Buck Inductor
          3. 7.2.1.2.3 Current-Sense Components
          4. 7.2.1.2.4 Output Capacitors
          5. 7.2.1.2.5 Input Capacitors
          6. 7.2.1.2.6 Frequency Set Resistor
          7. 7.2.1.2.7 Feedback Resistors
          8. 7.2.1.2.8 Compensation Components
        3. 7.2.1.3 Application Curves
      2. 7.2.2 Design 2 – High-Efficiency, 440kHz, Synchronous Buck Regulator
        1. 7.2.2.1 Design Requirements
        2. 7.2.2.2 Detailed Design Procedure
        3. 7.2.2.3 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
        1. 7.4.1.1 Power Stage Layout
        2. 7.4.1.2 Gate Drive Layout
        3. 7.4.1.3 PWM Controller Layout
        4. 7.4.1.4 Thermal Design and Layout
        5. 7.4.1.5 Ground Plane Design
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Development Support
        1. 8.1.1.1 Custom Design With WEBENCH® Tools
    2. 8.2 Documentation Support
      1. 8.2.1 Related Documentation
        1. 8.2.1.1 Low-EMI Design Resources
        2. 8.2.1.2 Thermal Design Resources
        3. 8.2.1.3 PCB Layout Resources
    3. 8.3 Receiving Notification of Documentation Updates
    4. 8.4 Support Resources
    5. 8.5 Trademarks
    6. 8.6 Electrostatic Discharge Caution
    7. 8.7 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Ground Plane Design

As mentioned previously, TI recommends using one or more of the inner PCB layers as a solid ground plane. A ground plane offers shielding for sensitive circuits and traces and also provides a quiet reference potential for the control circuitry. In particular, a full ground plane on the layer directly underneath the power stage components is essential. Connect the source terminal of the low-side MOSFET and return terminals of the input and output capacitors to this ground plane. Connect the PGND and AGND pins of the controller at the DAP and then connect to the system ground plane using an array of vias under the DAP. The PGND nets contain noise at the switching frequency and can bounce because of load current variations. The power traces for PGND, VIN, and SW can be restricted to one side of the ground plane, for example on the top layer. The other side of the ground plane contains much less noise and is an excellent choice for sensitive analog trace routes.