JAJA847 April   2025 MSPM0C1103 , MSPM0C1103-Q1 , MSPM0C1104 , MSPM0C1104-Q1 , MSPM0C1105 , MSPM0C1106 , MSPM0C1106-Q1 , MSPM0G1107 , MSPM0G1505 , MSPM0G1506 , MSPM0G1507 , MSPM0G1518 , MSPM0G1519 , MSPM0G3105 , MSPM0G3105-Q1 , MSPM0G3106 , MSPM0G3106-Q1 , MSPM0G3107 , MSPM0G3107-Q1 , MSPM0G3505 , MSPM0G3505-Q1 , MSPM0G3506 , MSPM0G3506-Q1 , MSPM0G3507 , MSPM0G3507-Q1 , MSPM0G3518 , MSPM0G3518-Q1 , MSPM0G3519 , MSPM0G3519-Q1 , MSPM0H3216 , MSPM0H3216-Q1 , MSPM0L1105 , MSPM0L1106 , MSPM0L1116 , MSPM0L1117 , MSPM0L1227 , MSPM0L1227-Q1 , MSPM0L1228 , MSPM0L1228-Q1 , MSPM0L1303 , MSPM0L1304 , MSPM0L1304-Q1 , MSPM0L1305 , MSPM0L1305-Q1 , MSPM0L1306 , MSPM0L1306-Q1 , MSPM0L1343 , MSPM0L1344 , MSPM0L1345 , MSPM0L1346 , MSPM0L2227 , MSPM0L2227-Q1 , MSPM0L2228 , MSPM0L2228-Q1

 

  1.   1
  2.   概要
  3.   商標
  4. 1はじめに
  5. 2EMC 規格と EMC 規格
    1. 2.1 EMC
      1. 2.1.1 EMS
      2. 2.1.2 EMI
    2. 2.2 EMC 規格
      1. 2.2.1 EMC 規格のカテゴリ
    3. 2.3 TI の EMC と IC の電気的信頼性
  6. 3EMC 改善ガイドラインの概要
    1. 3.1 PCB 設計ガイドライン
    2. 3.2 ファームウェアのガイドライン
  7. 4MSPM0 の EMC 改善機能
    1. 4.1 感受性保護機能
      1. 4.1.1 POR および BOR
      2. 4.1.2 NMI およびハード故障
      3. 4.1.3 I/O ESD と設定
    2. 4.2 放射削減機能
      1. 4.2.1 クロック ソース
      2. 4.2.2 電力モード
      3. 4.2.3 パッケージ
  8. 5EMS テストの分析
    1. 5.1 根本原因の分析
      1. 5.1.1 恒久的な損傷
      2. 5.1.2 回復可能な不具合
    2. 5.2 デバッグ フロー
  9. 6EMI テストの分析
    1. 6.1 根本原因の分析
      1. 6.1.1 電源ライン
      2. 6.1.2 外部 Vcore
    2. 6.2 デバッグ フロー
  10. 7まとめ
  11. 8参考資料

デバッグ フロー

EMI デバッグフローの鍵は、表 6-1 に示すように、EMI 故障を標準的なノイズ源カテゴリに分類することです。次に、ソフトウェアとハードウェアの変更を使用して、放射ノイズを低減します。

  1. IO 機能からの寄与を確認します。
    • IO トグルに関連するコメント機能を一つずつ追加し、ノイズレベルの低減を記録します。
  2. クロック、CPU、メモリアクセスからの貢献を確認します。
    • さまざまな電力モードと、さまざまな電力モードポリシーオプション (RUN0、RUN1、RUN2、STANDBY0) を試し、ノイズレベルの低減を記録します。
  3. IO 機能、クロック、CPU、メモリアクセスからのノイズの寄与を計算します。
  4. MSPM0 機能の使用方法を制御します。それでも問題が解決しない場合は、表 3-2 に示すように受動保護部品を追加するか、表 3-1に示す PCBレイアウトを最適化します。