SLUSFN0A April   2025  – December 2025 BQ25630

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Description (continued)
  6. Device Comparison
  7. Pin Configuration and Functions
  8. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Typical Characteristics
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Power-On-Reset (POR)
      2. 8.3.2  Device Power Up from Battery
      3. 8.3.3  USB-C Detection
        1. 8.3.3.1 Legacy Adapter Detection
        2. 8.3.3.2 USB-C Dead Battery Mode
        3. 8.3.3.3 SNK Mode
        4. 8.3.3.4 SRC Mode
        5. 8.3.3.5 DRP Mode - Dual Role Port
        6. 8.3.3.6 USB-C Debug Accessory Detection
      4. 8.3.4  Device Power Up from Input Source
        1. 8.3.4.1 REGN LDO Power Up
        2. 8.3.4.2 D+/D– Detection Sets Input Current Limit
        3. 8.3.4.3 Input Voltage Limit Threshold Setting (VINDPM Threshold)
        4. 8.3.4.4 Converter Power-Up
        5. 8.3.4.5 Input Current Optimizer (ICO)
        6. 8.3.4.6 Switching Frequency and Dithering Feature
      5. 8.3.5  Power Path Management
        1. 8.3.5.1 Narrow VDC Architecture
        2. 8.3.5.2 Dynamic Power Management
        3. 8.3.5.3 High Impedance (HIZ) Mode
      6. 8.3.6  Battery Charging Management
        1. 8.3.6.1 Autonomous Charging Cycle
        2. 8.3.6.2 Battery Charging Profile
        3. 8.3.6.3 Charging Termination
        4. 8.3.6.4 Thermistor Qualification
          1. 8.3.6.4.1 Advanced Temperature Profile in Charge Mode
          2. 8.3.6.4.2 TS Pin Thermistor Configuration
          3. 8.3.6.4.3 Cold/Hot Temperature Window in OTG Mode
          4. 8.3.6.4.4 JEITA Charge Rate Scaling
        5. 8.3.6.5 Charging Safety Timers
        6. 8.3.6.6 Alternate Power from Input
      7. 8.3.7  USB On-The-Go (OTG)
        1. 8.3.7.1 Boost OTG Mode
      8. 8.3.8  Integrated 12-bit ADC for Monitoring
      9. 8.3.9  Status Outputs (INT , PG )
        1. 8.3.9.1 PG Pin Power Good Indicator
        2. 8.3.9.2 Interrupts and Status, Flag, and Mask Bits
        3. 8.3.9.3 Interrupt to Host (INT)
      10. 8.3.10 BATFET Control
        1. 8.3.10.1 Shutdown Mode
        2. 8.3.10.2 Ship Mode
        3. 8.3.10.3 Standby Mode
        4. 8.3.10.4 System Power Reset
      11. 8.3.11 Protections
        1. 8.3.11.1 Voltage and Current Monitoring in Battery Only and HIZ Modes
          1. 8.3.11.1.1 Battery Overcurrent Protection
          2. 8.3.11.1.2 Battery Undervoltage Lockout
        2. 8.3.11.2 Voltage and Current Monitoring in Buck Mode
          1. 8.3.11.2.1 Input Overvoltage
          2. 8.3.11.2.2 System Overvoltage Protection (SYSOVP)
          3. 8.3.11.2.3 Forward Converter Cycle-by-Cycle Current Limit
          4. 8.3.11.2.4 System Short
          5. 8.3.11.2.5 Battery Overvoltage Protection (BATOVP)
          6. 8.3.11.2.6 Sleep Comparator
        3. 8.3.11.3 Voltage and Current Monitoring in Boost Mode
          1. 8.3.11.3.1 Boost Mode Overvoltage Protection
          2. 8.3.11.3.2 Boost Mode Duty Cycle Protection
          3. 8.3.11.3.3 Boost Mode PMID Undervoltage Protection
          4. 8.3.11.3.4 Boost Mode Battery Undervoltage
          5. 8.3.11.3.5 Boost Converter Cycle-by-Cycle Current Limit
          6. 8.3.11.3.6 Boost Mode SYS Short
        4. 8.3.11.4 Thermal Regulation and Thermal Shutdown
          1. 8.3.11.4.1 Thermal Protection in Buck Mode
          2. 8.3.11.4.2 Thermal Protection in Boost Mode
          3. 8.3.11.4.3 Thermal Protection in Battery-only Mode
        5. 8.3.11.5 Liquid Detection and Corrosion Mitigation (Patent Pending)
    4. 8.4 Device Functional Modes
      1. 8.4.1 Host Mode and Default Mode
      2. 8.4.2 Register Bit Reset
    5. 8.5 Programming
      1. 8.5.1 Serial Interface
        1. 8.5.1.1 Data Validity
        2. 8.5.1.2 START and STOP Conditions
        3. 8.5.1.3 Byte Format
        4. 8.5.1.4 Acknowledge (ACK) and Not Acknowledge (NACK)
        5. 8.5.1.5 Target Address and Data Direction Bit
        6. 8.5.1.6 Single Write and Read
        7. 8.5.1.7 Multi-Write and Multi-Read
    6. 8.6 Register Maps
      1. 8.6.1 Register Programming
      2. 8.6.2 BQ25630 Registers
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Inductor Selection
        2. 9.2.2.2 Input Capacitor
        3. 9.2.2.3 Output Capacitor
      3. 9.2.3 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Third-Party Products Disclaimer
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 Receiving Notification of Documentation Updates
    4. 10.4 Support Resources
    5. 10.5 Trademarks
    6. 10.6 Electrostatic Discharge Caution
    7. 10.7 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information
    1. 12.1 Package Option Addendum
      1. 12.1.1 Packaging Information
      2. 12.1.2 Tape and Reel Information
    2. 12.2 Mechanical Data

Interrupts and Status, Flag, and Mask Bits

BQ25630 incorporates an interrupt pin (INT) to inform a host microcontroller of status changes without requiring microcontroller polling. Each reported event has a status field, a flag bit and a mask bit. The status field reports the status at the time that the status is read. The flag bit is latched and, once set to 1, remains at 1 until the host reads the bit, which clears the bit to 0. The mask bit determines whether or not an interrupt pulse is generated when the corresponding bit is set.


BQ25630 Relationship between STAT, FLAG and
          MASK

Figure 8-8 Relationship between STAT, FLAG and MASK

These transitions also generate an INT pulse if the associated mask bit is set to 0. Because the INT is generated from the status field transition and not the flag bit, an INT pulse is sent to the host even if the associated flag is already set to 1 when the status transition occurs. Details of this behavior are shown in Figure 8-8.

The default behavior is to generate a 256μs INT pulse when any flag bit is set to 1 by the change of a status bit. These pulses can be masked out on a flag-by-flag basis by setting a flag's mask bit to 1. Setting the mask bit does not affect the transition of the flag bit from 0 to 1, only the generation of the 256μs INT pulse.