SLVSHX5A July   2025  – December 2025 TPS2HC08-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 SNS Timing Characteristics
    7. 6.7 Switching Characteristics
    8. 6.8 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Accurate Current Sense
        1. 8.3.1.1 SNS Response Time
        2. 8.3.1.2 SNS Output Filter
        3. 8.3.1.3 Multiplexing of Current Sense Across Channels
        4. 8.3.1.4 Multiplexing of Current Sense Across Devices
      2. 8.3.2  Overcurrent Protection
        1. 8.3.2.1 Adjustable Current Limit
          1. 8.3.2.1.1 Current Limiting With Thermal Regulation
          2. 8.3.2.1.2 Current Limiting With No Thermal Regulation
          3. 8.3.2.1.3 Current Limit Foldback
          4. 8.3.2.1.4 Current Limit Accuracy
        2. 8.3.2.2 Thermal Shutdown
          1. 8.3.2.2.1 Relative Thermal Shutdown
          2. 8.3.2.2.2 Absolute Thermal Shutdown
      3. 8.3.3  Retry Protection Mechanism From Thermal Shutdown
        1. 8.3.3.1 Reliable Switch-On Behavior
      4. 8.3.4  Inductive-Load Switching-Off Clamp
      5. 8.3.5  Slower Slew Rate Option
      6. 8.3.6  Capacitive Load Charging
        1. 8.3.6.1 Adjustable Current Limiting for Inrush Control
        2. 8.3.6.2 Current Limit with Thermal Regulation for Capacitive Loads
        3. 8.3.6.3 Retry Thermal Shutdown Behavior for Capacitive Loads
        4. 8.3.6.4 Impact of DC Load on Capacitive Charging Capability
        5. 8.3.6.5 Device Capability
      7. 8.3.7  Bulb Charging
        1. 8.3.7.1 Non-Thermal Regulated Mode for Bulb Loads
        2. 8.3.7.2 Thermal Management During Bulb Inrush
        3. 8.3.7.3 Device Capability
      8. 8.3.8  Fault Detection and Reporting
        1. 8.3.8.1 Diagnostic Enable Function
        2. 8.3.8.2 FLT Reporting
        3. 8.3.8.3 FLT Timings
        4. 8.3.8.4 Fault Table
      9. 8.3.9  Full Diagnostics
        1. 8.3.9.1 Open-Load Detection
          1. 8.3.9.1.1 Channel On
          2. 8.3.9.1.2 Channel Off
        2. 8.3.9.2 Short-to-Battery Detection
        3. 8.3.9.3 Reverse-Polarity and Battery Protection
      10. 8.3.10 Full Protections
        1. 8.3.10.1 UVLO Protection
        2. 8.3.10.2 Loss of GND Protection
        3. 8.3.10.3 Loss of Power Supply Protection
        4. 8.3.10.4 Reverse Current Protection
        5. 8.3.10.5 Protection for MCU I/Os
    4. 8.4 Device Functional Modes
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 EMC Transient Disturbances Test
      3. 9.2.3 Transient Thermal Performance
      4. 9.2.4 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Examples
        1. 9.4.2.1 Without a GND Network
        2. 9.4.2.2 With a GND Network
      3. 9.4.3 Wettable Flank Package
  11. 10Device and Documentation Support
    1. 10.1 Third-Party Products Disclaimer
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Reverse Current Protection

Method 1: block diode connected with VBB. Both the device and load are protected when in reverse polarity. The blocking diode does not allow any of the current to flow during reverse battery condition.

TPS2HC08-Q1 Reverse Protection with Block DiodeFigure 8-43 Reverse Protection with Block Diode

Method 2 (GND network protection): only the high-side device is protected under this connection. The load reverse current is limited by the impedance of the load. When reverse polarity happens, the continuous reverse current through the power FET must not make the heat build up be greater than the absolute maximum junction temperature. This can be calculated using the RON(REV) value and the RθJA specification. In the reverse battery condition, the FET must come on to lower the power dissipation. This action is achieved through the path from EN to system ground where the positive voltage is being applied. No matter what types of connection are between the device GND and the board GND, if a GND voltage shift happens, verify that the following proper connections for the normal operation:

  • Connect the current limit programmable resistor to the device GND.
TPS2HC08-Q1 Reverse Protection with GND NetworkFigure 8-44 Reverse Protection with GND Network
  • Recommendation – resistor and diode in parallel: a peak negative spike can occur when the inductive load is switching off, which can damage the HSS or the diode. So, TI recommends a resistor in parallel with the diode when driving an inductive load. The recommended selection are a 4.7kΩ resistor in parallel with an IF > 100mA diode. If multiple high-side switches are used, the resistor and diode can be shared among devices.
  • Ground Resistor: The higher resistor value contributes to a better current limit effect when the reverse battery or negative ISO pulses.
    Equation 8. TPS2HC08-Q1

    where

    • –VCC is the maximum reverse battery voltage (typically –16V).
    • –IGND is the maximum reverse current the ground pin can withstand, which is available in the Absolute Maximum Ratings.
  • Ground Diode: A diode is needed to block the reverse voltage, which also brings a ground shift (≅600mV). Additionally, the diode must be ≅200V reverse voltage for the ISO 7637 pulse 1 testing so that the diode does not get biased.