SLVSHX5A July   2025  – December 2025 TPS2HC08-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 SNS Timing Characteristics
    7. 6.7 Switching Characteristics
    8. 6.8 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Accurate Current Sense
        1. 8.3.1.1 SNS Response Time
        2. 8.3.1.2 SNS Output Filter
        3. 8.3.1.3 Multiplexing of Current Sense Across Channels
        4. 8.3.1.4 Multiplexing of Current Sense Across Devices
      2. 8.3.2  Overcurrent Protection
        1. 8.3.2.1 Adjustable Current Limit
          1. 8.3.2.1.1 Current Limiting With Thermal Regulation
          2. 8.3.2.1.2 Current Limiting With No Thermal Regulation
          3. 8.3.2.1.3 Current Limit Foldback
          4. 8.3.2.1.4 Current Limit Accuracy
        2. 8.3.2.2 Thermal Shutdown
          1. 8.3.2.2.1 Relative Thermal Shutdown
          2. 8.3.2.2.2 Absolute Thermal Shutdown
      3. 8.3.3  Retry Protection Mechanism From Thermal Shutdown
        1. 8.3.3.1 Reliable Switch-On Behavior
      4. 8.3.4  Inductive-Load Switching-Off Clamp
      5. 8.3.5  Slower Slew Rate Option
      6. 8.3.6  Capacitive Load Charging
        1. 8.3.6.1 Adjustable Current Limiting for Inrush Control
        2. 8.3.6.2 Current Limit with Thermal Regulation for Capacitive Loads
        3. 8.3.6.3 Retry Thermal Shutdown Behavior for Capacitive Loads
        4. 8.3.6.4 Impact of DC Load on Capacitive Charging Capability
        5. 8.3.6.5 Device Capability
      7. 8.3.7  Bulb Charging
        1. 8.3.7.1 Non-Thermal Regulated Mode for Bulb Loads
        2. 8.3.7.2 Thermal Management During Bulb Inrush
        3. 8.3.7.3 Device Capability
      8. 8.3.8  Fault Detection and Reporting
        1. 8.3.8.1 Diagnostic Enable Function
        2. 8.3.8.2 FLT Reporting
        3. 8.3.8.3 FLT Timings
        4. 8.3.8.4 Fault Table
      9. 8.3.9  Full Diagnostics
        1. 8.3.9.1 Open-Load Detection
          1. 8.3.9.1.1 Channel On
          2. 8.3.9.1.2 Channel Off
        2. 8.3.9.2 Short-to-Battery Detection
        3. 8.3.9.3 Reverse-Polarity and Battery Protection
      10. 8.3.10 Full Protections
        1. 8.3.10.1 UVLO Protection
        2. 8.3.10.2 Loss of GND Protection
        3. 8.3.10.3 Loss of Power Supply Protection
        4. 8.3.10.4 Reverse Current Protection
        5. 8.3.10.5 Protection for MCU I/Os
    4. 8.4 Device Functional Modes
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 EMC Transient Disturbances Test
      3. 9.2.3 Transient Thermal Performance
      4. 9.2.4 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Examples
        1. 9.4.2.1 Without a GND Network
        2. 9.4.2.2 With a GND Network
      3. 9.4.3 Wettable Flank Package
  11. 10Device and Documentation Support
    1. 10.1 Third-Party Products Disclaimer
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Layout Guidelines

To achieve good thermal performance, connect the VBB pad to a large copper pour. On the top PCB layer, the pour can extend beyond the package dimensions as shown in the layout examples below. In addition to this, having a VBB plane on one or more internal PCB layers and/or on the bottom layer is recommended. Vias must connect these planes to the top VBB pour. Connecting the VOUT1 and VOUT2 pads to large copper pours on the board can also help to achieve better thermal performance as the heat can transfer through the internal copper pillars to the large copper pours on the board.

TI recommends that the IO signals that connect to the microcontroller be routed to a via and then through an internal PCB layer.

If used in the design, the CIC capacitor, must be placed as close as possible to the VBB and GND pin of the device. If a ground network is used for reverse battery protection, the CIC capacitor must be connected from the VBB net to the IC_GND net. The CVBB capacitor must be placed close to the VBB pin and connected to system ground to allow for best performance.

The RLIM component must be placed close to the ILIM and GND pin of the device. If a ground network is used for reverse battery protection, the RLIM must be connected from the ILIM pin to the IC_GND net for expected current limit performance.

The FLT and SNS pin traces must be routed far apart (orthogonal or in different layers) to avoid any coupling between the two signals.

The TPS1HC03-Q1 device footprint is compatible with all other devices in the family and can be used for common board design.