TIDUF85A August   2024  – December 2024

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
      1. 2.1.1 Subsystems
        1. 2.1.1.1 Arc Detection Channels
          1. 2.1.1.1.1 Isolated Current Measurement
          2. 2.1.1.1.2 Band-Pass Filter
          3. 2.1.1.1.3 Analog-to-Digital Conversion
          4. 2.1.1.1.4 Arc Detection Using Embedded AI Models
        2. 2.1.1.2 Arc Labeling Circuit
          1. 2.1.1.2.1 Isolated String Voltage Measurement
          2. 2.1.1.2.2 Isolated Arc Voltage Measurement With Isolated Comparator
          3. 2.1.1.2.3 Window Comparator for Advanced Labeling
    2. 2.2 Design Considerations
      1. 2.2.1 Current Sensor and Input Stage
      2. 2.2.2 Analog Band-Pass Filter
      3. 2.2.3 Arc-Labeling Circuit
        1. 2.2.3.1 String Voltage Sensing
        2. 2.2.3.2 Arc Gap Voltage Sensing
        3. 2.2.3.3 Differential to Single-Ended Conversion
        4. 2.2.3.4 Window Comparator for Arc Labeling
      4. 2.2.4 Auxiliary Power Supply
      5. 2.2.5 controlCard and Debug Interface
    3. 2.3 Highlighted Products
      1. 2.3.1 TIEVM-ARC-AFE
      2. 2.3.2 TMDSCNCD28P55X – TMDSCNCD28P55X controlCARD Evaluation Module
        1. 2.3.2.1 Hardware Features
      3. 2.3.3 OPA4323 – Quad, 5.5V, 20MHz, Zero-Cross Low-Noise (6nV/√Hz) RRIO Operational Amplifier
      4. 2.3.4 OPA323 – Single, 5.5V, 20MHz, Zero-Cross Low-Noise (6nV/√Hz) RRIO Operational Amplifier
      5. 2.3.5 AMC3330 – ±1V Input, Precision Voltage Sensing Reinforced Isolated Amplifier With Integrated DC/DC
      6. 2.3.6 AMC23C11 – Fast-Response, Reinforced, Isolated Comparator With Adjustable Threshold and Latch Function
  9. 3Hardware, Testing Requirements, and Test Results
    1. 3.1 Signal Chain Verification
      1. 3.1.1 Hardware Requirements
      2. 3.1.2 Test Setup
      3. 3.1.3 Test Results
    2. 3.2 Arc Testing
  10. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 BOM
    2. 4.2 Tools and Software
    3. 4.3 Documentation Support
    4. 4.4 Support Resources
    5. 4.5 Trademarks
  11. 5About the Author
  12. 6Revision History

Arc Testing

Figure 3-8 shows the setup for testing with real arcs. An arc generator is needed to emulate real-world arcs. The string of PV panels can be emulated by a DC current source. In that case, a decoupling and line impedance network is necessary to imitate the impedance of the solar cabling. The exact setup and testing scenarios are described in the relevant norms like UL1699B.

For the arc labeling circuit, it is important to connect the voltage across the arc generator with low impedance to the arc labeling circuit input J9. The string current needs to be feed through the current transformer. Connect the string voltage to connector J8.

TIDA-010955 Test Setup for Test With Real ArcsFigure 3-8 Test Setup for Test With Real Arcs

The description of the software tools and workflow on how to gather and label data, train an embedded AI model and validate the model is beyond the scope of this document. Links to detailed descriptions, user guides, tools and other resources are available in the product folder of TIDA-010955 and TIEVM-ARC-AFE. The required software is part of the C2000WARE-DIGITALPOWER-SDK.