TIDUFF8 September   2025

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
    3. 2.3 Highlighted Products
      1. 2.3.1 LDC5072-Q1
      2. 2.3.2 MSPM0G3507
      3. 2.3.3 TPSM365R3
      4. 2.3.4 TLV9062
  9. 3System Design Theory
    1. 3.1 Hardware Design
      1. 3.1.1 Target PCB
      2. 3.1.2 Coil PCB
      3. 3.1.3 Signal Chain PCB
        1. 3.1.3.1 Inductive Angle Position Sensor Front-End Schematic
        2. 3.1.3.2 Differential to Single-Ended Signal Conversion
      4. 3.1.4 MSPM0G3507 Schematic Design
      5. 3.1.5 Power Supply Design
    2. 3.2 Absolute Position Calculation
    3. 3.3 Software Design
      1. 3.3.1 Angle Calculation Timing
      2. 3.3.2 Rotary Angle Error Sources and Compensation
  10. 4Hardware, Software, Testing Requirements, and Test Results
    1. 4.1 Hardware Requirements
      1. 4.1.1 PCB Overview
      2. 4.1.2 Encoder Interface
    2. 4.2 Software
    3. 4.3 Test Setup
    4. 4.4 Test Results
      1. 4.4.1 Inductive Sensor Sine and Cosine Noise Measurement
      2. 4.4.2 Absolute Angle Noise Measurement
      3. 4.4.3 Rotary Angle Accuracy Measurement
      4. 4.4.4 Impact of Air Gap on Noise, 4th Electrical Harmonics and Total Angle Accuracy
      5. 4.4.5 Power Consumption Measurement
  11. 5Design and Documentation Support
    1. 5.1 Design Files
      1. 5.1.1 Schematics
      2. 5.1.2 BOM
      3. 5.1.3 PCB Layout
      4. 5.1.4 Altium Project Files
      5. 5.1.5 Gerber Files
      6. 5.1.6 Assembly Drawings
    2. 5.2 Tools and Software
    3. 5.3 Documentation Support
    4. 5.4 Support Resources
    5.     Trademarks
  12. 6About the Author

MSPM0G3507

The MSPM0G350x microcontrollers (MCUs) are part of the MSP highly integrated, ultra-low-power 32-bit MCU family based on the enhanced Arm® Cortex®-M0+ 32-bit core platform operating at up to 80MHz frequency. These cost-optimized MCUs offer high-performance analog peripheral integration, support extended temperature ranges from –40°C to 125°C, and operate with supply voltages ranging from 1.62V to 3.6V. The MSPM0G350x MCU key features with this design are:

  • Two simultaneous sampling 12-bit 4MSPS analog-to-digital converters (ADCs) with up to 17 external channels
  • 14-bit effective resolution at 250kSPS with hardware averaging
  • Math accelerator supports DIV, SQRT, MAC and TRIG computations
  • Optimized low-power modes:
    • RUN: 96µA/MHz (CoreMark)
    • STANDBY: 1.5µA with real-time clock (RTC) and Static Random Access Memory (SRAM) retention