TIDUFG2 December   2025

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Terminology
    2. 1.2 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 Sensor Selection
    3. 2.3 Highlighted Products
      1. 2.3.1 TLV387
      2. 2.3.2 TLV9054
      3. 2.3.3 MSPM0G5187-LP
      4. 2.3.4 LOG300
      5. 2.3.5 UCC28881
      6. 2.3.6 TPS709
  9. 3System Design Theory
    1. 3.1 Current Sensor
    2. 3.2 Hybrid Integrator
    3. 3.3 Band-Pass Filter
      1. 3.3.1 Log Amplifier
      2. 3.3.2 Current Low-Pass Filter
      3. 3.3.3 Non-isolated Voltage Sensing
      4. 3.3.4 Auto Labeling Circuit
        1. 3.3.4.1 Line Voltage Sensing
        2. 3.3.4.2 Arc Gap Voltage Sensing
        3. 3.3.4.3 Differential to Single-Ended Conversion
      5. 3.3.5 Power Supply
  10. 4Hardware, Software, Testing Requirements, and Test Results
    1. 4.1 Hardware Requirements
    2. 4.2 Software
    3. 4.3 Test Setup
      1. 4.3.1 Arc Testing Setup
    4. 4.4 Test Results
  11. 5Design and Documentation Support
    1. 5.1 Design Files
      1. 5.1.1 Schematics
      2. 5.1.2 BOM
    2. 5.2 Tools and Software
    3. 5.3 Documentation Support
    4. 5.4 Support Resources
    5. 5.5 Trademarks
  12. 6About the Author

Non-isolated Voltage Sensing

TIDA-010971 Voltage Sensing Schematic Figure 3-11 Voltage Sensing Schematic

R12, R13, R14, R16, and R19 form a voltage divider to drop the voltage down. C24 and C30 are unpopulated, but can be placed to provide some low-pass filtering. C29 and R83 create a 50Hz high-pass filter and capacitively couple the signal and center on the mid-supply reference. This works with the current low pass output for simple power measurement. For arc detection a higher cutoff frequency works since the grid stabilizes most variations at low frequencies.