Product details

Number of channels (#) 2 Total supply voltage (Max) (+5V=5, +/-5V=10) 24 Total supply voltage (Min) (+5V=5, +/-5V=10) 2.7 Rail-to-rail In, Out GBW (Typ) (MHz) 10 Slew rate (Typ) (V/us) 14 Vos (offset voltage @ 25 C) (Max) (mV) 2 Iq per channel (Typ) (mA) 0.36 Vn at 1 kHz (Typ) (nV/rtHz) 27 Rating Catalog Operating temperature range (C) -40 to 85 Offset drift (Typ) (uV/C) 5 Features Input bias current (Max) (pA) 140000 CMRR (Typ) (dB) 107 Output current (Typ) (mA) 4.3 Architecture Bipolar
Number of channels (#) 2 Total supply voltage (Max) (+5V=5, +/-5V=10) 24 Total supply voltage (Min) (+5V=5, +/-5V=10) 2.7 Rail-to-rail In, Out GBW (Typ) (MHz) 10 Slew rate (Typ) (V/us) 14 Vos (offset voltage @ 25 C) (Max) (mV) 2 Iq per channel (Typ) (mA) 0.36 Vn at 1 kHz (Typ) (nV/rtHz) 27 Rating Catalog Operating temperature range (C) -40 to 85 Offset drift (Typ) (uV/C) 5 Features Input bias current (Max) (pA) 140000 CMRR (Typ) (dB) 107 Output current (Typ) (mA) 4.3 Architecture Bipolar
PDIP (P) 8 93 mm² 9.81 x 9.43 SOIC (D) 8 19 mm² 4.9 x 3.9
  • (For 5V Supply, Typ Unless Noted)
  • Rail-to-Rail Input CMVR −0.25 V to 5.25 V
  • Rail-to-Rail Output Swing 0.01V to 4.99V
  • High Gain-Bandwidth, 10 MHz at 20 kHz
  • Slew Rate 12 V/µs
  • Low Supply Current 360 µA/Amp
  • Wide Supply Range 2.7 V to over 24 V
  • CMRR 100 dB
  • Gain 100 dB with RL = 10 k
  • PSRR 82 dB
  • (For 5V Supply, Typ Unless Noted)
  • Rail-to-Rail Input CMVR −0.25 V to 5.25 V
  • Rail-to-Rail Output Swing 0.01V to 4.99V
  • High Gain-Bandwidth, 10 MHz at 20 kHz
  • Slew Rate 12 V/µs
  • Low Supply Current 360 µA/Amp
  • Wide Supply Range 2.7 V to over 24 V
  • CMRR 100 dB
  • Gain 100 dB with RL = 10 k
  • PSRR 82 dB

The LM6132/34 provides new levels of speed vs. power performance in applications where low voltage supplies or power limitations previously made compromise necessary. With only 360 µA/amp supply current, the 10 MHz gain-bandwidth of this device supports new portable applications where higher power devices unacceptably drain battery life.

The LM6132/34 can be driven by voltages that exceed both power supply rails, thus eliminating concerns over exceeding the common-mode voltage range. The rail-to-rail output swing capability provides the maximum possible dynamic range at the output. This is particularly important when operating on low supply voltages. The LM6132/34 can also drive large capacitive loads without oscillating.

Operating on supplies from 2.7 V to over 24 V, the LM6132/34 is excellent for a very wide range of applications, from battery operated systems with large bandwidth requirements to high speed instrumentation.

The LM6132/34 provides new levels of speed vs. power performance in applications where low voltage supplies or power limitations previously made compromise necessary. With only 360 µA/amp supply current, the 10 MHz gain-bandwidth of this device supports new portable applications where higher power devices unacceptably drain battery life.

The LM6132/34 can be driven by voltages that exceed both power supply rails, thus eliminating concerns over exceeding the common-mode voltage range. The rail-to-rail output swing capability provides the maximum possible dynamic range at the output. This is particularly important when operating on low supply voltages. The LM6132/34 can also drive large capacitive loads without oscillating.

Operating on supplies from 2.7 V to over 24 V, the LM6132/34 is excellent for a very wide range of applications, from battery operated systems with large bandwidth requirements to high speed instrumentation.

Download

Similar products you might be interested in

open-in-new Compare products
Drop-in replacement with upgraded functionality to the compared device.
NEW OPA2992 ACTIVE Dual, 40-V, 10.6-MHz, rail-to-rail input/output, low-offset-voltage, low-noise op amp Lower Vos (1 mV), lower noise (7 nV/√Hz), higher slew rate (32 V/us) and higher output current (65 mA)

Technical documentation

star = Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 9
Type Title Date
* Data sheet LM6132/LM6134 Dual and Quad Low Power 10 MHz Rail-to-Rail I/O Operational Amplifiers datasheet (Rev. E) 05 Sep 2014
Technical article What is an op amp? 21 Jan 2020
Technical article How to lay out a PCB for high-performance, low-side current-sensing designs 06 Feb 2018
Technical article Low-side current sensing for high-performance cost-sensitive applications 22 Jan 2018
Technical article Voltage and current sensing in HEV/EV applications 22 Nov 2017
E-book The Signal e-book: A compendium of blog posts on op amp design topics 28 Mar 2017
Application note AN-1234 RSDS™ Flat Panel Display Design Guidelines Part 1 (Rev. A) 06 May 2013
Application note AN-1237 RSDS™ Flat Panel Display Design Guidelines Part 2 (Rev. A) 06 May 2013
Application note AN-1515 A Comprehensive Study of the Howland Current Pump (Rev. A) 26 Apr 2013

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

DIP-ADAPTER-EVM — DIP adapter evaluation module

Speed up your op amp prototyping and testing with the DIP-Adapter-EVM, which provides a fast, easy and inexpensive way to interface with small, surface-mount ICs. You can connect any supported op amp using the included Samtec terminal strips or wire them directly to existing circuits.

The (...)

Evaluation board

DUAL-DIYAMP-EVM — Dual Channel Universal Do-It-Yourself (DIY) Amplifier Circuit Evaluation Module

The DUAL-DIYAMP-EVM is a unique evaluation module (EVM) family that provides engineers and do it yourselfers (DIYers) with real-world amplifier circuits, enabling you to quickly evaluate design concepts and verify simulations. It is designed specifically for dual package op amps in the (...)
Simulation model

LM6132 PSPICE Model

SNOM223.ZIP (3 KB) - PSpice Model
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI — SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
Calculation tool

ANALOG-ENGINEER-CALC — Analog engineer's calculator

The Analog Engineer’s Calculator is designed to speed up many of the repetitive calculations that analog circuit design engineers use on a regular basis. This PC-based tool provides a graphical interface with a list of various common calculations ranging from setting op-amp gain with feedback (...)
lock = Requires export approval (1 minute)
Design tool

CIRCUIT060013 — Inverting amplifier with T-network feedback circuit

This design inverts the input signal, VIN, and applies a signal gain of 1000 V/V or 60 dB. The inverting amplifier with T-feedback network can be used to obtain a high gain without a small value for R4 or very large values for the feedback resistors.
Design tool

CIRCUIT060015 — Adjustable reference voltage circuit

This circuit combines an inverting and non-inverting amplifier to make a reference voltage adjustable from the negative of the input voltage up to the input voltage. Gain can be added to increase the maximum negative reference level.
Design tool

CIRCUIT060074 — High-side current sensing with comparator circuit

This high-side, current sensing solution uses one comparator with a rail-to-rail input common mode range to create an over-current alert (OC-Alert) signal at the comparator output (COMP OUT) if the load current rises above 1 A. The OC-Alert signal in this implementation is active low. So when the (...)
Package Pins Download
PDIP (P) 8 View options
SOIC (D) 8 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos