Ultra-Low Input Current Amplifier
Product details
Parameters
Package | Pins | Size
Features
- (Maximum Limit, 25°C Unless Otherwise Noted)
- Input Current (100% Tested): 25 fA
- Input Current Over Temperature: 2 pA
- Low Power: 750 µA
- Low VOS: 350 µV
- Low Noise: 22 nV/√Hz at 1 kHz Typical
Description
Featuring 100% tested input currents of 25 fA maximum, low operating power, and ESD protection of 2000 V, the LMC6001 device achieves a new industry benchmark for low input current operational amplifiers. By tightly controlling the molding compound, Texas Instruments is able to offer this ultra-low input current in a lower cost molded package.
To avoid long turnon settling times common in other low input current op amps, the LMC6001A is tested three times in the first minute of operation. Even units that meet the 25-fA limit are rejected if they drift.
Because of the ultra-low input current noise of 0.13 fA/√Hz, the LMC6001 can provide almost noiseless amplification of high resistance signal sources. Adding only 1 dB at 100 kΩ, 0.1 dB at 1 MΩ and 0.01 dB or less from 10 MΩ to 2,000 MΩ, the LMC6001 is an almost noiseless amplifier.
The LMC6001 is ideally suited for electrometer applications requiring ultra-low input leakage such as sensitive photodetection transimpedance amplifiers and sensor amplifiers. Because input referred noise is only 22 nV/√Hz, the LMC6001 can achieve higher signal to noise ratio than JFET input type electrometer amplifiers. Other applications of the LMC6001 include long interval integrators, ultra-high input impedance instrumentation amplifiers, and sensitive electrical-field measurement circuits.
Technical documentation
Type | Title | Date | |
---|---|---|---|
* | Datasheet | LMC6001 Ultra, Ultra-Low Input Current Amplifier datasheet (Rev. I) | Sep. 29, 2015 |
Technical article | What is an op amp? | Jan. 21, 2020 | |
Technical article | How to lay out a PCB for high-performance, low-side current-sensing designs | Feb. 06, 2018 | |
Technical article | Low-side current sensing for high-performance cost-sensitive applications | Jan. 22, 2018 | |
Technical article | Voltage and current sensing in HEV/EV applications | Nov. 22, 2017 | |
E-book | The Signal e-book: A compendium of blog posts on op amp design topics | Mar. 28, 2017 |
Design & development
For additional terms or required resources, click any title below to view the detail page where available.Design tools & simulation
Features
- Leverages Cadence PSpice Technology
- Preinstalled library with a suite of digital models to enable worst-case timing analysis
- Dynamic updates ensure you have access to most current device models
- Optimized for simulation speed without loss of accuracy
- Supports simultaneous analysis of multiple products
- (...)
Features
- Expedites circuit design with analog-to-digital converters (ADCs) and digital-to-analog converters (DACs)
- Noise calculations
- Common unit translation
- Solves common amplifier circuit design problems
- Gain selections using standard resistors
- Filter configurations
- Total noise for common amplifier configurations
- (...)
CAD/CAE symbols
Package | Pins | Download |
---|---|---|
PDIP (P) | 8 | View options |
Ordering & quality
- RoHS
- REACH
- Device marking
- Lead finish/Ball material
- MSL rating/Peak reflow
- MTBF/FIT estimates
- Material content
- Qualification summary
- Ongoing reliability monitoring
Support & training
TI E2E™ forums with technical support from TI engineers
Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.
If you have questions about quality, packaging or ordering TI products, see TI support.