Product details

Number of channels (#) 1 Total supply voltage (Max) (+5V=5, +/-5V=10) 5.5 Total supply voltage (Min) (+5V=5, +/-5V=10) 4.5 Rail-to-rail In, Out GBW (Typ) (MHz) 1 Slew rate (Typ) (V/us) 1.4 Vos (offset voltage @ 25 C) (Max) (mV) 100 Iq per channel (Typ) (mA) 2 Vn at 1 kHz (Typ) (nV/rtHz) 12 Rating Catalog Operating temperature range (C) -40 to 125 Offset drift (Typ) (uV/C) 1.5 Features CMRR (Typ) (dB) 80 Output current (Typ) (mA) 55 Architecture Fully Differential, Variable Gain (Dig)
Number of channels (#) 1 Total supply voltage (Max) (+5V=5, +/-5V=10) 5.5 Total supply voltage (Min) (+5V=5, +/-5V=10) 4.5 Rail-to-rail In, Out GBW (Typ) (MHz) 1 Slew rate (Typ) (V/us) 1.4 Vos (offset voltage @ 25 C) (Max) (mV) 100 Iq per channel (Typ) (mA) 2 Vn at 1 kHz (Typ) (nV/rtHz) 12 Rating Catalog Operating temperature range (C) -40 to 125 Offset drift (Typ) (uV/C) 1.5 Features CMRR (Typ) (dB) 80 Output current (Typ) (mA) 55 Architecture Fully Differential, Variable Gain (Dig)
SOIC (D) 14 52 mm² 8.65 x 6
  • Typical Values, TA = 25°C, V+=5V, V-=0V.
  • Gain Bandwidth 1 MHz
  • Input Voltage Range (G= 0.096 V/V) -15V to +15V
  • Core Op-Amp Input Offset Voltage 100 µV (Max)
  • Supply Current 2 mA (Max)
  • Gain (Attenuation Mode) 0.096 V/V, 0.192 V/V0.384 V/V, 0.768 V/V
  • Gain (Amplification Mode) 1 V/V, 2 V/V
  • Gain Error 0.035% (Max)
  • Core Op-Amp PSRR 90 dB (Min)
  • CMRR 80 dB (min)
  • Adjustable Output Common Mode 1V to 4V
  • Temperature Range −40 to 125°C
  • Package 14-Pin SOIC

All trademarks are the property of their respective owners.

  • Typical Values, TA = 25°C, V+=5V, V-=0V.
  • Gain Bandwidth 1 MHz
  • Input Voltage Range (G= 0.096 V/V) -15V to +15V
  • Core Op-Amp Input Offset Voltage 100 µV (Max)
  • Supply Current 2 mA (Max)
  • Gain (Attenuation Mode) 0.096 V/V, 0.192 V/V0.384 V/V, 0.768 V/V
  • Gain (Amplification Mode) 1 V/V, 2 V/V
  • Gain Error 0.035% (Max)
  • Core Op-Amp PSRR 90 dB (Min)
  • CMRR 80 dB (min)
  • Adjustable Output Common Mode 1V to 4V
  • Temperature Range −40 to 125°C
  • Package 14-Pin SOIC

All trademarks are the property of their respective owners.

The LMP7312 is a digitally programmable variable gain amplifier/attenuator. Its wide input voltage range and superior precision make it a prime choice for applications requiring high accuracy such as data acquisition systems for IO modules in programmable logic control (PLC). The LMP7312 provides a differential output to maximize dynamic range and signal to noise ratio, thereby reducing the overall system error. It can also be configured to handle single ended input data converters by means of the VOCM pin (see for details). The inputs of LMP7312 can be configured in attenuation mode to handle large input signals of up to +/- 15V, as well as in amplification mode to handle current loops of 0-20mA and 4-20mA.The LMP7312 is equipped with a null switch to evaluate the offset of the internal amplifier. A ensured 0.035% maximum gain error (for all gains) and a maximum gain drift of 5ppm over the extended industrial temperature range (-40° to 125°C) make the LMP7312 very attractive for high precision systems even under harsh conditions. A low input offset voltage of 100µV and low voltage noise of 3µVpp give the LMP7312 a superior performance. The LMP7312 is fully specified from -40° to 125°C and is available in SOIC-14 package.

The LMP7312 is a digitally programmable variable gain amplifier/attenuator. Its wide input voltage range and superior precision make it a prime choice for applications requiring high accuracy such as data acquisition systems for IO modules in programmable logic control (PLC). The LMP7312 provides a differential output to maximize dynamic range and signal to noise ratio, thereby reducing the overall system error. It can also be configured to handle single ended input data converters by means of the VOCM pin (see for details). The inputs of LMP7312 can be configured in attenuation mode to handle large input signals of up to +/- 15V, as well as in amplification mode to handle current loops of 0-20mA and 4-20mA.The LMP7312 is equipped with a null switch to evaluate the offset of the internal amplifier. A ensured 0.035% maximum gain error (for all gains) and a maximum gain drift of 5ppm over the extended industrial temperature range (-40° to 125°C) make the LMP7312 very attractive for high precision systems even under harsh conditions. A low input offset voltage of 100µV and low voltage noise of 3µVpp give the LMP7312 a superior performance. The LMP7312 is fully specified from -40° to 125°C and is available in SOIC-14 package.

Download

Technical documentation

star = Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 7
Type Title Date
* Data sheet Precision SPI-Programmable AFE with Differential/Single-Ended Input/Output datasheet (Rev. B) 22 Mar 2013
Technical article What is an op amp? 21 Jan 2020
Technical article How to lay out a PCB for high-performance, low-side current-sensing designs 06 Feb 2018
Technical article Low-side current sensing for high-performance cost-sensitive applications 22 Jan 2018
Technical article Voltage and current sensing in HEV/EV applications 22 Nov 2017
E-book The Signal e-book: A compendium of blog posts on op amp design topics 28 Mar 2017
User guide LMP7312 Evaluation Board User Guide 21 Feb 2012

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI — SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
Calculation tool

ANALOG-ENGINEER-CALC — Analog engineer's calculator

The Analog Engineer’s Calculator is designed to speed up many of the repetitive calculations that analog circuit design engineers use on a regular basis. This PC-based tool provides a graphical interface with a list of various common calculations ranging from setting op-amp gain with feedback (...)
Design tool

CIRCUIT060013 — Inverting amplifier with T-network feedback circuit

This design inverts the input signal, VIN, and applies a signal gain of 1000 V/V or 60 dB. The inverting amplifier with T-feedback network can be used to obtain a high gain without a small value for R4 or very large values for the feedback resistors.
Design tool

CIRCUIT060015 — Adjustable reference voltage circuit

This circuit combines an inverting and non-inverting amplifier to make a reference voltage adjustable from the negative of the input voltage up to the input voltage. Gain can be added to increase the maximum negative reference level.
Package Pins Download
SOIC (D) 14 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos