DLPS037F October   2014  – June 2021 DLPC900

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics
    6. 6.6  System Oscillators Timing Requirements (1)
    7. 6.7  Power-Up and Power-Down Timing Requirements
      1. 6.7.1 Power-Up
      2. 6.7.2 Power-Down
    8. 6.8  JTAG Interface: I/O Boundary Scan Application Timing Requirements
    9. 6.9  JTAG Interface: I/O Boundary Scan Application Switching Characteristics
    10. 6.10 Programmable Output Clocks Switching Characteristics
    11. 6.11 Port 1 and 2 Input Pixel Interface Timing Requirements
    12. 6.12 Two Pixels Per Clock (48-Bit Bus) Timing Requirements
    13. 6.13 SSP Switching Characteristics
    14. 6.14 DMD Interface Switching Characteristics (1)
    15. 6.15 DMD LVDS Interface Switching Characteristics
    16. 6.16 Source Input Blanking Requirements
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 DMD Configurations
      2. 7.3.2 Video Timing Input Blanking Specification
      3. 7.3.3 Board-Level Test Support
      4. 7.3.4 Two Controller Considerations
      5. 7.3.5 Memory Design Considerations
        1. 7.3.5.1 Flash Memory Optimization
        2. 7.3.5.2 Operating Modes
        3. 7.3.5.3 DLPC900 Memory Space
        4. 7.3.5.4 Minimizing Memory Space
        5. 7.3.5.5 Minimizing Board Size
          1. 7.3.5.5.1 Package Selection
          2. 7.3.5.5.2 Large Density Flash
            1. 7.3.5.5.2.1 Combining Two Chip-Selects with One 32-Megabyte Flash
              1. 7.3.5.5.2.1.1 Combining Three Chip-Selects with One 64-Megabyte Flash
            2. 7.3.5.5.2.2 Combining Three Chip-Selects with One 128-Megabyte Flash
        6. 7.3.5.6 Minimizing Board Space
        7. 7.3.5.7 Flash Memory
    4. 7.4 Device Functional Modes
      1. 7.4.1 Structured Light Application
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Typical Two Controller Chipset
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 DLPC900 System Interfaces
            1. 8.2.1.2.1.1 Control Interface
            2. 8.2.1.2.1.2 Input Data Interfaces
            3. 8.2.1.2.1.3 DLPC900 System Output Interfaces
              1. 8.2.1.2.1.3.1 Illumination Interface
              2. 8.2.1.2.1.3.2 Trigger and Sync Interface
            4. 8.2.1.2.1.4 DLPC900 System Support Interfaces
              1. 8.2.1.2.1.4.1 Reference Clock and PLL
              2. 8.2.1.2.1.4.2 Program Memory Flash Interface
              3. 8.2.1.2.1.4.3 DMD Interface
      2. 8.2.2 Typical Single Controller Chipset
  9. Power Supply Recommendations
    1. 9.1 System Power Regulation
      1. 9.1.1 Power Distribution System
        1. 9.1.1.1 1.15-V System Power
        2. 9.1.1.2 1.8-V System Power
        3. 9.1.1.3 3.3-V System Power
    2. 9.2 System Environment and Defaults
      1. 9.2.1 DLPC900 System Power-Up and Reset Default Conditions
    3. 9.3 System Power-Up Sequence
      1. 9.3.1 Power-On Sense (POSENSE) Support
      2. 9.3.2 Power Good (PWRGOOD) Support
      3. 9.3.3 5-V Tolerant Support
    4. 9.4 System Reset Operation
      1. 9.4.1 Power-Up Reset Operation
      2. 9.4.2 System Reset Operation
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1  General PCB Recommendations
      2. 10.1.2  PCB Layout Guidelines for Internal Controller PLL Power
      3. 10.1.3  PCB Layout Guidelines for Quality Video Performance
      4. 10.1.4  Recommended MOSC Crystal Oscillator Configuration
      5. 10.1.5  Spread Spectrum Clock Generator Support
      6. 10.1.6  GPIO Interface
      7. 10.1.7  General Handling Guidelines for Unused CMOS-Type Pins
      8. 10.1.8  DMD Interface Considerations
        1. 10.1.8.1 Flex Connector Plating
      9. 10.1.9  PCB Design Standards
      10. 10.1.10 Signal Layers
      11. 10.1.11 Trace Widths and Minimum Spacing
      12. 10.1.12 Trace Impedance and Routing Priority
      13. 10.1.13 Power and Ground Planes
      14. 10.1.14 Power Vias
      15. 10.1.15 Decoupling
      16. 10.1.16 Fiducials
    2. 10.2 Layout Example
    3. 10.3 Thermal Considerations
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Device Nomenclature
      2. 11.1.2 Device Markings
      3. 11.1.3 DEFINITIONS - Video Timing Parameters
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Support Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Thermal Considerations

The thermal limitation for the DLPC900 is that the maximum operating junction temperature (TJ) must not be exceeded (this is defined in Section 6.3). This temperature is dependent on operating ambient temperature, airflow, PCB design (including the component layout density and the amount of copper used), power dissipation of the DLPC900, and power dissipation of surrounding components. The DLPC900 device package is designed primarily to extract heat through the power and ground planes of the PCB, thus copper content and airflow over the PCB are important factors.

The recommended maximum operating ambient temperature (TA) is provided primarily as a design target and is based on maximum DLPC900 power dissipation and RθJA at 1 m/s of forced airflow, where RθJA is the thermal resistance of the package as measured using a JEDEC-defined standard test PCB. This JEDEC test PCB is not necessarily representative of the DLPC900 PCB, and thus the reported thermal resistance can be inaccurate in the actual product application. Although the actual thermal resistance can be different, it is the best information available during the design phase to estimate thermal performance. However after the PCB is designed and the product is built, it is highly recommended thermal performance be measured and validated.

To do this, the top-center case temperature must be measured under the worst case product scenario (max power dissipation, max voltage, max ambient temp) and validated not to exceed the maximum recommended case temperature (TC). This specification is based on the measured φJT for the DLPC900 package and provides a relatively accurate correlation to junction temperature. Care must be taken when measuring this case temperature to prevent accidental cooling of the package surface. It is recommended to use a small (approximately 40 gauge) thermocouple. The bead and the thermocouple wire must be covered with a minimal amount of thermally conductive epoxy and contact the top of the package. The wires are routed closely along the package and the board surface to avoid cooling the bead through the wires.