JAJA879A December   2023  – May 2025 MSPM0C1103 , MSPM0C1103-Q1 , MSPM0C1104 , MSPM0C1104-Q1 , MSPM0G1105 , MSPM0G1106 , MSPM0G1107 , MSPM0G1505 , MSPM0G1506 , MSPM0G1507 , MSPM0G1518 , MSPM0G1519 , MSPM0G3105 , MSPM0G3105-Q1 , MSPM0G3106 , MSPM0G3106-Q1 , MSPM0G3107 , MSPM0G3107-Q1 , MSPM0G3505 , MSPM0G3505-Q1 , MSPM0G3506 , MSPM0G3506-Q1 , MSPM0G3507 , MSPM0G3507-Q1 , MSPM0G3518 , MSPM0G3518-Q1 , MSPM0G3519 , MSPM0G3519-Q1 , MSPM0H3216 , MSPM0H3216-Q1 , MSPM0L1105 , MSPM0L1106 , MSPM0L1116 , MSPM0L1117 , MSPM0L1227 , MSPM0L1227-Q1 , MSPM0L1228

 

  1.   1
  2.   概要
  3.   商標
  4. 1MSPM0 製品ラインアップの概要
    1. 1.1 はじめに
    2. 1.2 STM8 MCU と MSPM0 MCU の製品ラインアップの比較
  5. 2エコシステムと移行
    1. 2.1 エコシステムの比較
      1. 2.1.1 MSPM0 ソフトウェア開発キット (MSPM0 SDK)
      2. 2.1.2 MSPM0 による IDE サポート
      3. 2.1.3 SysConfig
      4. 2.1.4 デバッグ ツール
      5. 2.1.5 LaunchPad
    2. 2.2 移行プロセス
      1. 2.2.1 ステップ 1:適切な MSPM0 MCU を選択する
      2. 2.2.2 ステップ2.IDE の設定と CCS の簡単な説明
        1. 2.2.2.1 IDE の設定
        2. 2.2.2.2 CCS の簡単な説明
      3. 2.2.3 ステップ3.MSPM0 SDK の設定と MSPM0 SDK の簡単な説明
        1. 2.2.3.1 MSPM0 SDK の設定
        2. 2.2.3.2 SDK の簡単な説明
      4. 2.2.4 ステップ 4:ソフトウェア評価
      5. 2.2.5 ステップ5.PCB ボードの設計
      6. 2.2.6 ステップ6.量産
    3. 2.3
  6. 3コア アーキテクチャの比較
    1. 3.1 CPU
    2. 3.2 組み込みメモリの比較
      1. 3.2.1 フラッシュ メモリと EEPROM の特長
      2. 3.2.2 フラッシュ メモリと EEPROM の構成
        1. 3.2.2.1 フラッシュ メモリと EEPROM のリージョン
        2. 3.2.2.2 MSPM0 の NONMAIN メモリ
      3. 3.2.3 内蔵 SRAM
    3. 3.3 電源投入とリセットの概要と比較
    4. 3.4 クロックの概要と比較
      1. 3.4.1 発振器
      2. 3.4.2 クロック信号の比較
    5. 3.5 MSPM0 の動作モードの概要と比較
      1. 3.5.1 動作モードの比較
      2. 3.5.2 低消費電力モードでの MSPM0 機能
      3. 3.5.3 低消費電力モードへの移行
      4. 3.5.4 低消費電力モードのサンプル コード
    6. 3.6 割り込みとイベントの比較
      1. 3.6.1 割り込みと例外
        1. 3.6.1.1 MSPM0 の割り込み管理
        2. 3.6.1.2 STM8 の割り込みコントローラ (ITC)
      2. 3.6.2 MSPM0 のイベントハンドラ
      3. 3.6.3 イベント管理の比較
    7. 3.7 デバッグとプログラミングの比較
      1. 3.7.1 デバッグモードの比較
      2. 3.7.2 プログラミングモードの比較
        1. 3.7.2.1 ブートストラップ ローダ (BSL) のプログラミング オプション
  7. 4デジタル ペリフェラルの比較
    1. 4.1 汎用 I/O (GPIO、IOMUX)
    2. 4.2 UART (Universal Asynchronous Receiver-Transmitter)
    3. 4.3 シリアル・ペリフェラル・インターフェイス (SPI)
    4. 4.4 Interintegrated Circuit Interface (I2C)
    5. 4.5 タイマ (TIMGx、TIMAx)
    6. 4.6 ウィンドウ付きウォッチドッグ タイマ (WWDT)
  8. 5アナログ ペリフェラルの比較
    1. 5.1 A/D コンバータ (ADC)
    2. 5.2 コンパレータ (COMP)
    3. 5.3 基準電圧 (VREF)
  9. 6まとめ
  10. 7参考資料
  11. 8改訂履歴

MSPM0 の動作モードの概要と比較

MSPM0 MCU には 5 つのメイン動作モード (電力モード) があり、アプリケーションの要件に基づいてデバイスの消費電力を最適化できます。消費電力を低減するためのモードは次のとおりです。RUN、SLEEP、STOP、STANDY、SHUTDOWN。CPU は RUN モードではコードをアクティブに実行しています。ペリフェラル割り込みイベントにより、デバイスを SLEEP、STOP、または STANDBY モードから RUN モードにウェークアップできます。SHUTDOWN モードでは、内部コア レギュレータが完全にディセーブルされ、消費電力が最小化されます。また、NRST、SWD、または特定の IO でのロジック レベルの一致によってのみウェークアップが可能です。RUN、SLEEP、STOP、STANDBY の各モードには、複数の構成可能なポリシー オプション (例:RUN.x) も含まれており、性能と消費電力のバランスを確保できます。

性能と消費電力のバランスをさらに高めるために、MSPM0 デバイスには次の 2 つの電力ドメインが実装されています。PD1 (CPU、メモリ、高性能ペリフェラル用) と PD0 (低速、低消費電力ペリフェラル用)。PD1 は、RUN モードと SLEEP モードで常に電源が供給されますが、他のすべてのモードではディセーブルになります。PD0 は、RUN、SLEEP、STOP、STANDBY の各モードで常に電源が供給されます。SHUTDOWN モードでは、PD1 と PD0 の両方がディセーブルになります。