JAJA879A December   2023  – May 2025 MSPM0C1103 , MSPM0C1103-Q1 , MSPM0C1104 , MSPM0C1104-Q1 , MSPM0G1105 , MSPM0G1106 , MSPM0G1107 , MSPM0G1505 , MSPM0G1506 , MSPM0G1507 , MSPM0G1518 , MSPM0G1519 , MSPM0G3105 , MSPM0G3105-Q1 , MSPM0G3106 , MSPM0G3106-Q1 , MSPM0G3107 , MSPM0G3107-Q1 , MSPM0G3505 , MSPM0G3505-Q1 , MSPM0G3506 , MSPM0G3506-Q1 , MSPM0G3507 , MSPM0G3507-Q1 , MSPM0G3518 , MSPM0G3518-Q1 , MSPM0G3519 , MSPM0G3519-Q1 , MSPM0H3216 , MSPM0H3216-Q1 , MSPM0L1105 , MSPM0L1106 , MSPM0L1116 , MSPM0L1117 , MSPM0L1227 , MSPM0L1227-Q1 , MSPM0L1228

 

  1.   1
  2.   概要
  3.   商標
  4. 1MSPM0 製品ラインアップの概要
    1. 1.1 はじめに
    2. 1.2 STM8 MCU と MSPM0 MCU の製品ラインアップの比較
  5. 2エコシステムと移行
    1. 2.1 エコシステムの比較
      1. 2.1.1 MSPM0 ソフトウェア開発キット (MSPM0 SDK)
      2. 2.1.2 MSPM0 による IDE サポート
      3. 2.1.3 SysConfig
      4. 2.1.4 デバッグ ツール
      5. 2.1.5 LaunchPad
    2. 2.2 移行プロセス
      1. 2.2.1 ステップ 1:適切な MSPM0 MCU を選択する
      2. 2.2.2 ステップ2.IDE の設定と CCS の簡単な説明
        1. 2.2.2.1 IDE の設定
        2. 2.2.2.2 CCS の簡単な説明
      3. 2.2.3 ステップ3.MSPM0 SDK の設定と MSPM0 SDK の簡単な説明
        1. 2.2.3.1 MSPM0 SDK の設定
        2. 2.2.3.2 SDK の簡単な説明
      4. 2.2.4 ステップ 4:ソフトウェア評価
      5. 2.2.5 ステップ5.PCB ボードの設計
      6. 2.2.6 ステップ6.量産
    3. 2.3
  6. 3コア アーキテクチャの比較
    1. 3.1 CPU
    2. 3.2 組み込みメモリの比較
      1. 3.2.1 フラッシュ メモリと EEPROM の特長
      2. 3.2.2 フラッシュ メモリと EEPROM の構成
        1. 3.2.2.1 フラッシュ メモリと EEPROM のリージョン
        2. 3.2.2.2 MSPM0 の NONMAIN メモリ
      3. 3.2.3 内蔵 SRAM
    3. 3.3 電源投入とリセットの概要と比較
    4. 3.4 クロックの概要と比較
      1. 3.4.1 発振器
      2. 3.4.2 クロック信号の比較
    5. 3.5 MSPM0 の動作モードの概要と比較
      1. 3.5.1 動作モードの比較
      2. 3.5.2 低消費電力モードでの MSPM0 機能
      3. 3.5.3 低消費電力モードへの移行
      4. 3.5.4 低消費電力モードのサンプル コード
    6. 3.6 割り込みとイベントの比較
      1. 3.6.1 割り込みと例外
        1. 3.6.1.1 MSPM0 の割り込み管理
        2. 3.6.1.2 STM8 の割り込みコントローラ (ITC)
      2. 3.6.2 MSPM0 のイベントハンドラ
      3. 3.6.3 イベント管理の比較
    7. 3.7 デバッグとプログラミングの比較
      1. 3.7.1 デバッグモードの比較
      2. 3.7.2 プログラミングモードの比較
        1. 3.7.2.1 ブートストラップ ローダ (BSL) のプログラミング オプション
  7. 4デジタル ペリフェラルの比較
    1. 4.1 汎用 I/O (GPIO、IOMUX)
    2. 4.2 UART (Universal Asynchronous Receiver-Transmitter)
    3. 4.3 シリアル・ペリフェラル・インターフェイス (SPI)
    4. 4.4 Interintegrated Circuit Interface (I2C)
    5. 4.5 タイマ (TIMGx、TIMAx)
    6. 4.6 ウィンドウ付きウォッチドッグ タイマ (WWDT)
  8. 5アナログ ペリフェラルの比較
    1. 5.1 A/D コンバータ (ADC)
    2. 5.2 コンパレータ (COMP)
    3. 5.3 基準電圧 (VREF)
  9. 6まとめ
  10. 7参考資料
  11. 8改訂履歴

CPU

MSPM0 ファミリは、ARM Cortex M0+ CPU コアアーキテクチャをベースにしています。STM8 ファミリは、STM8 CPU コアアーキテクチャをベースにしています。表 3-1に、MSPM0 ファミリの CPU と STM8 の CPU の主な特長を比較して紹介しています。

表 3-1 CPU 機能セットの比較
特長 STM8L、STM8S MSPM0C、MSPM0L および MSPM0H
アーキテクチャ 拡張 STM8 CPU コア Arm Cortex M0+
データ バス幅 8 ビット 32 ビット
命令セット 複雑な命令セット 縮小命令セット
命令の数 80 56
乗算命令 MUL (8×8) MULS (32×32)
除算命令 DIV (16÷8)、DIVW (16÷16) MATHACLは、32 ビット除算をサポートしています(1)
パイプライン 3 ステージ 2 ステージ
動作周波数 (最大) 16MHz または 24MHz(2) 24MHz または 32MHz(3)
DMA あり あり
Coremark/MHz 使用不可(4) 2.39(5)
MSPM0Gxx シリーズには 32 ビット除算速度を向上させる演算アクセラレータ (MATHACL) が搭載されています。
STM8Lxx の最大動作周波数は 16MHz、STM8Sxx は 24MHz です。
MSPM0Cxx の最大動作周波数は 24MHz、MSPM0Lxx は 32MHz です。
STM8 の Coremark スコアは、st.com および eembc.com では公開されていません。
Coremark スコアは、ARM 公式 Web サイトのArm Cortex-M0+ プロセッサのデータシートから取得しています。