JAJAA65B June   2014  – October 2025 DS90UB913A-Q1 , DS90UB954-Q1 , DS90UB960-Q1 , DS90UB9702-Q1

 

  1.   1
  2.   概要
  3.   商標
  4. 1はじめに
  5. 2PoC (Power over Coax) の動作原理
    1. 2.1 インダクタの特性
    2. 2.2 コンデンサ特性
    3. 2.3 インダクタとフェライト ビーズ
  6. 3設計上の考慮事項
    1. 3.1 周波数範囲
    2. 3.2 電源に関する考慮事項
    3. 3.3 抵抗に関する考慮事項
    4. 3.4 インダクタのサイズに関する検討事項
    5. 3.5 レイアウトに関する考慮事項
  7. 4FPD-Link PoC の要件
    1. 4.1 チャネル要件
  8. 5PoC ノイズ
    1. 5.1 PoC のノイズ要件
    2. 5.2 VPoC のノイズおよびパルスの測定
      1. 5.2.1 要件
      2. 5.2.2 測定手順
    3. 5.3 RIN+ ノイズの測定
      1. 5.3.1 要件
      2. 5.3.2 測定手順
    4. 5.4 PoC ノイズの原因
    5. 5.5 ノイズ測定のベスト プラクティス
    6. 5.6 PoC ノイズの影響の低減
  9. 6TI でレビュー済みの PoC ネットワーク
    1. 6.1 FPD-Link III データシートに記載の PoC ネットワーク
    2. 6.2 Murata FPD3 のネットワーク
      1. 6.2.1 Murata FPD3 の設計 1
      2. 6.2.2 Murata FPD3 の設計 2
      3. 6.2.3 Murata FPD3 の設計 3
      4. 6.2.4 Murata FPD3 の設計 4
      5. 6.2.5 Murata FPD3 の設計 5
      6. 6.2.6 Murata FPD3 の設計 6
    3. 6.3 TDK FPD3 ネットワーク
      1. 6.3.1 TDK FPD3 の設計 1
      2. 6.3.2 TDK FPD3 の設計 2
      3. 6.3.3 TDK FPD3 の設計 3
      4. 6.3.4 TDK FPD3 の設計 4
      5. 6.3.5 TDK FPD3 の設計 5
      6. 6.3.6 TDK FPD3 の設計 6
      7. 6.3.7 TDK FPD3 の設計 7
      8. 6.3.8 TDK FPD3 の設計 8
    4. 6.4 Coilcraft FPD3 のネットワーク
      1. 6.4.1 Coilcraft FPD3 の設計 1
      2. 6.4.2 Coilcraft FPD3 の設計 2
      3. 6.4.3 Coilcraft FPD3 の設計 3
      4. 6.4.4 Coilcraft FPD3 の設計 4
      5. 6.4.5 Coilcraft FPD3 の設計 5
      6. 6.4.6 Coilcraft FPD3 の設計 6
      7. 6.4.7 Coilcraft FPD3 の設計 7
      8. 6.4.8 Coilcraft FPD3 の設計 8
      9. 6.4.9 Coilcraft FPD3 の設計 9
    5. 6.5 Murata FPD4 のネットワーク
      1. 6.5.1  設計 1
      2. 6.5.2  設計 2
      3. 6.5.3  設計 3
      4. 6.5.4  設計 4
      5. 6.5.5  設計 5
      6. 6.5.6  設計 6
      7. 6.5.7  設計 7
      8. 6.5.8  設計 8
      9. 6.5.9  設計 9
      10. 6.5.10 設計 10
      11. 6.5.11 設計 11
      12. 6.5.12 設計 12
      13. 6.5.13 設計 13
      14. 6.5.14 設計 14
      15. 6.5.15 設計 15
      16. 6.5.16 設計 16
      17. 6.5.17 設計 17
      18. 6.5.18 設計 18
      19. 6.5.19 設計 19
      20. 6.5.20 設計 20
      21. 6.5.21 設計 21
      22. 6.5.22 設計 22
      23. 6.5.23 設計 23
      24. 6.5.24 設計 24
      25. 6.5.25 設計 25
      26. 6.5.26 設計 26
      27. 6.5.27 設計 27
      28. 6.5.28 設計 28
      29. 6.5.29 設計 29
    6. 6.6 TDK FPD4 ネットワーク
      1. 6.6.1  設計 1
      2. 6.6.2  設計 2
      3. 6.6.3  設計 3
      4. 6.6.4  設計 4
      5. 6.6.5  設計 5
      6. 6.6.6  設計 6
      7. 6.6.7  設計 7
      8. 6.6.8  設計 8
      9. 6.6.9  設計 9
      10. 6.6.10 設計 10
      11. 6.6.11 設計 11
      12. 6.6.12 設計 12
      13. 6.6.13 設計 13
      14. 6.6.14 設計 14
      15. 6.6.15 設計 15
      16. 6.6.16 設計 16
      17. 6.6.17 設計 17
      18. 6.6.18 設計 18
      19. 6.6.19 設計 19
      20. 6.6.20 設計 20
      21. 6.6.21 設計 21
      22. 6.6.22 設計 22
      23. 6.6.23 設計 23
    7. 6.7 Coilcraft FPD4 のネットワーク
      1. 6.7.1  設計 1
      2. 6.7.2  設計 2
      3. 6.7.3  設計 3
      4. 6.7.4  設計 4
      5. 6.7.5  設計 5
      6. 6.7.6  設計 6
      7. 6.7.7  設計 7
      8. 6.7.8  設計 8
      9. 6.7.9  設計 9
      10. 6.7.10 設計 10
      11. 6.7.11 設計 11
      12. 6.7.12 設計 12
      13. 6.7.13 設計 13
      14. 6.7.14 設計 14
      15. 6.7.15 設計 15
  10. 7まとめ
  11. 8参考資料
  12. 9改訂履歴

測定手順

システム内の RIN+ ノイズを正確に測定するには、イメージ センサと、シリアライザ側の他のすべての負荷伝送デバイスが、電流をアクティブに消費している要があります。接続されているシリアライザとデシリアライザから生成されるフォワード チャネルとバック チャネルの送信も、ノイズ測定への干渉を防止するため無効化する必要があります。フォワード チャネルとバック チャネルの送信を無効にするには、シリアライザおよびデシリアライザ デバイスの PDB ピンを GND にプルする必要があります。ビデオ データをアクティブにキャプチャする際には、イメージ センサから RIN+ ノイズが発生することが予想されます。したがって、測定時にイメージ センサが有効になっていない場合、結果はシステムの RIN+ ノイズを正確に表すものではありません。RIN+ ノイズ測定手順の例を以下に示します。

  1. シリアライザおよびデシリアライザ基板を、測定のあいだシリアライザとデシリアライザの両方の PDB ピン方が GND にプルされるように修正します
  2. シリアライザ基板の I2C バス (SCL、SDA、GND) から、外部 I2C コントローラに、ワイヤを半田付けで接続します
  3. 同軸ケーブルを使用して、シリアライザ基板とデシリアライザ基板を接続します
  4. 以前に VPoC を測定したとき判定していなければ、プローブをグランドに短絡してオシロスコープのノイズフロアを測定します
  5. システム全体 (センサ、シリアライザ、デシリアライザなど) に電力を供給します
  6. 外部 I2C コントローラを介してイメージ センサをローカルに構成し、ビデオが生成されていることを確認します
  7. オシロスコープの帯域幅を 0 ~ 50MHz に設定します
  8. グランド測定用の短いプローブ先端を使用し、IC ピンに最も近い点で RIN+ ノイズを測定します
  9. ノイズフロアを考慮し、RIN+ ノイズの測定値からノイズフロアの測定値を減算します