SPRAD21E May   2023  – February 2024 AM620-Q1 , AM623 , AM625 , AM625-Q1 , AM625SIP , AM62A3 , AM62A3-Q1 , AM62A7 , AM62A7-Q1 , AM62P , AM62P-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. Introduction
    1. 1.1 AM62x Processor Family
      1. 1.1.1 AM625
      2. 1.1.2 AM623
      3. 1.1.3 AM625SIP
      4. 1.1.4 AM625-Q1
      5. 1.1.5 AM620-Q1
    2. 1.2 AM62Ax Processor Family
      1. 1.2.1 AM62A7
      2. 1.2.2 AM62A7-Q1
      3. 1.2.3 AM62A3
      4. 1.2.4 AM62A3-Q1
    3. 1.3 AM62Px Processor Family
      1. 1.3.1 AM62P
      2. 1.3.2 AM62P-Q1
  5. Related Collaterals
    1. 2.1 Links to Commonly Available and Applicable Collaterals
      1. 2.1.1 AM625 / AM623 / AM625SIP / AM625-Q1 / AM620-Q1
      2. 2.1.2 AM62A7 / AM62A3
      3. 2.1.3 AM62P / AM62P-Q1
    2. 2.2 Hardware Design Guide
      1. 2.2.1 AM625 / AM623 / AM625SIP / AM625-Q1 / AM620-Q1
      2. 2.2.2 AM62A7 / AM62A3
      3. 2.2.3 AM62P / AM62P-Q1
  6. Processor Selection
    1. 3.1 Data Sheet
    2. 3.2 Peripheral Instance Naming Convention
    3. 3.3 Device Ordering and Quality
  7. Power Architecture
    1. 4.1 Generating Supply Rails
      1. 4.1.1 AM625 / AM623 / AM625SIP / AM625-Q1 / AM620-Q1
        1. 4.1.1.1 PMIC (Power Management IC)
          1. 4.1.1.1.1 Additional Reference
        2. 4.1.1.2 Discrete Power
          1. 4.1.1.2.1 DC/DC Converter
          2. 4.1.1.2.2 LDO
      2. 4.1.2 AM62A7 / AM62A3
        1. 4.1.2.1 PMIC
        2. 4.1.2.2 Discrete Power
      3. 4.1.3 AM62P / AM62P-Q1
        1. 4.1.3.1 PMIC
        2. 4.1.3.2 Discrete Power
    2. 4.2 Power Control and Protection
      1. 4.2.1 Load Switch
      2. 4.2.2 eFuse
  8. General Recommendations
    1. 5.1 Processor Performance Evaluation Module (SK - Starter Kit)
    2. 5.2 Device-Specific (Processor-Specific, Processor-Family Specific) SK Versus Data Sheet
      1. 5.2.1 Notes About Component Selection
        1. 5.2.1.1 Series Resistor
        2. 5.2.1.2 Parallel Pull Resistor
        3. 5.2.1.3 Drive Strength Configuration
        4. 5.2.1.4 Data Sheet Recommendations
        5. 5.2.1.5 Processor IOs - External ESD Protection
        6. 5.2.1.6 Peripheral Clock Output Series Resistors
      2. 5.2.2 Additional Information Regarding Reuse of SK Design
        1. 5.2.2.1 Design Notes Added on the SK Schematics
        2. 5.2.2.2 SK Design Files Reuse
    3. 5.3 Before You Begin The Design
      1. 5.3.1  Documentation
      2. 5.3.2  Processor Pin Attributes (Pinout) Verification
      3. 5.3.3  Device Comparison and IOSET
      4. 5.3.4  Note on PADCONFIG Registers
      5. 5.3.5  Processor IO (Signal) Isolation for Fail-Safe Operation
      6. 5.3.6  Reference to Device-Specific SK
      7. 5.3.7  High-Speed Interface Design Guidelines
      8. 5.3.8  Recommended Current Source or Sink for LVCMOS (GPIO) Outputs
      9. 5.3.9  Connection of Slow Ramp Inputs or Capacitors to LVCMOS IOs (Inputs or Outputs)
      10. 5.3.10 Queries and Clarifications Related to Processor During Custom Board Design
  9. Processor Specific Recommendations
    1. 6.1 Common (Processor Start-Up) Connection
      1. 6.1.1 Power Supply
        1. 6.1.1.1 Supply for Core and Peripherals
          1. 6.1.1.1.1 AM625 / AM623 / AM625SIP / AM625-Q1 / AM620-Q1 and AM62A7 / AM62A3
          2. 6.1.1.1.2 AM62P / AM62P-Q1
          3. 6.1.1.1.3 Additional Information
        2. 6.1.1.2 Supply for IO Groups
          1. 6.1.1.2.1 AM625 / AM623 / AM625SIP / AM625-Q1 / AM620-Q1 and AM62A7 / AM62A3
          2. 6.1.1.2.2 AM62P / AM62P-Q1
          3. 6.1.1.2.3 Additional Information
        3. 6.1.1.3 Supply for VPP (eFuse ROM Programming)
        4. 6.1.1.4 Supply Connection for Partial IO Mode (Low Power) Configuration
          1. 6.1.1.4.1 Partial IO Used
          2. 6.1.1.4.2 Partial IO Not Used
          3. 6.1.1.4.3 Data Sheet Reference for Power Sequence
        5. 6.1.1.5 Additional Information
      2. 6.1.2 Capacitors for Supply Rails
        1. 6.1.2.1 AM625 / AM623 / AM625SIP / AM625-Q1 / AM620-Q1
        2. 6.1.2.2 AM62A7 / AM62A3 and AM62P / AM62P-Q1
        3. 6.1.2.3 Additional Information
          1. 6.1.2.3.1 AM625 / AM623 / AM625SIP / AM625-Q1 / AM620-Q1 and AM62A7 / AM62A3
          2. 6.1.2.3.2 AM62P / AM62P-Q1
      3. 6.1.3 Processor Clock
        1. 6.1.3.1 Clock Inputs
          1. 6.1.3.1.1 High Frequency Oscillator (MCU_OSC0_XI/ MCU_OSC0_XO)
          2. 6.1.3.1.2 Low Frequency Oscillator (WKUP_LFOSC0_XI/ WKUP_LFOSC0_XO)
          3. 6.1.3.1.3 EXT_REFCLK1 (External Clock Input to Main Domain)
          4. 6.1.3.1.4 Additional Information
        2. 6.1.3.2 Clock Outputs
      4. 6.1.4 Processor Reset
        1. 6.1.4.1 External Reset Inputs
        2. 6.1.4.2 External Reset Status Outputs
        3. 6.1.4.3 Additional Information
      5. 6.1.5 Configuration of Boot Modes (for Processor)
        1. 6.1.5.1 Processor Boot Mode Inputs Isolation Buffers Use Case and Optimization
        2. 6.1.5.2 Bootmode Selection
          1. 6.1.5.2.1 Notes for USB Boot Mode
        3. 6.1.5.3 Additional Information
    2. 6.2 Board Debug Using JTAG and EMU
      1. 6.2.1 Additional Information
  10. Processor Peripherals
    1. 7.1 Supply Connections for IO Groups
      1. 7.1.1 AM625 / AM623 / AM625SIP / AM625-Q1 / AM620-Q1 and AM62A7 / AM62A3
      2. 7.1.2 AM62P / AM62P-Q1
    2. 7.2 Memory Interface (DDRSS (DDR4 / LPDDR4), MMCSD (eMMC / SD / SDIO), OSPI / QSPI and GPMC)
      1. 7.2.1 DDR Subsystem (DDRSS)
        1. 7.2.1.1 DDR4 SDRAM (Double Data Rate 4 Synchronous Dynamic Random-Access Memory)
          1. 7.2.1.1.1 AM625 / AM623 / AM625-Q1 / AM620-Q1
            1. 7.2.1.1.1.1 Interface Configuration
            2. 7.2.1.1.1.2 Routing Topology and Terminations
            3. 7.2.1.1.1.3 Resistors for Control and Calibration
            4. 7.2.1.1.1.4 Capacitors for the Power Supply Rails
            5. 7.2.1.1.1.5 Data Bit or Byte Swapping
            6. 7.2.1.1.1.6 VTT Termination Schematics Reference
          2. 7.2.1.1.2 AM625SIP
          3. 7.2.1.1.3 AM62A7 / AM62A3
          4. 7.2.1.1.4 AM62P / AM62P-Q1
        2. 7.2.1.2 LPDDR4 SDRAM (Low-Power Double Data Rate 4 Synchronous Dynamic Random-Access Memory)
          1. 7.2.1.2.1 AM625 / AM623 / AM625-Q1 / AM620-Q1
            1. 7.2.1.2.1.1 Interface Configuration
            2. 7.2.1.2.1.2 Routing Topology and Terminations
            3. 7.2.1.2.1.3 Resistors for Control and Calibration
            4. 7.2.1.2.1.4 Capacitors for the Power Supply Rails
            5. 7.2.1.2.1.5 Data Bit or Byte Swapping
          2. 7.2.1.2.2 AM625SIP
          3. 7.2.1.2.3 AM62A7 / AM62A3 and AM62P / AM62P-Q1
            1. 7.2.1.2.3.1 Interface Configuration
            2. 7.2.1.2.3.2 Routing Topology and Terminations
            3. 7.2.1.2.3.3 Resistors for Control and Calibration
            4. 7.2.1.2.3.4 Capacitors for the Power Supply Rails
            5. 7.2.1.2.3.5 Data Bit or Byte Swapping
      2. 7.2.2 Multi-Media Card/Secure Digital (MMCSD)
        1. 7.2.2.1 MMC0 - eMMC (Embedded Multi-Media Card) Interface
          1. 7.2.2.1.1 AM625 / AM623 / AM625SIP / AM625-Q1 / AM620-Q1 and AM62A7 / AM62A3
            1. 7.2.2.1.1.1 IO Power Supply
            2. 7.2.2.1.1.2 eMMC (Attached Device) Reset
            3. 7.2.2.1.1.3 Signals Termination
            4. 7.2.2.1.1.4 Capacitors for the Power Supply Rails
          2. 7.2.2.1.2 AM62P / AM62P-Q1
            1. 7.2.2.1.2.1 MMC0 Used
              1. 7.2.2.1.2.1.1 IO Power Supply
              2. 7.2.2.1.2.1.2 eMMC (Attached Device) Reset
              3. 7.2.2.1.2.1.3 Signals Termination
              4. 7.2.2.1.2.1.4 Capacitors for the Power Supply Rails
            2. 7.2.2.1.2.2 MMC0 Not Used
          3. 7.2.2.1.3 Additional Information on eMMC PHY
        2. 7.2.2.2 MMC0 – SD (Secure Digital) Card Interface
        3. 7.2.2.3 MMC1 / MMC2 – SD (Secure Digital) Card Interface
          1. 7.2.2.3.1 IO Power Supply
          2. 7.2.2.3.2 SD Card Supply Reset and Boot Configuration
          3. 7.2.2.3.3 Signals Termination
          4. 7.2.2.3.4 ESD Protection
          5. 7.2.2.3.5 Capacitors for the Power Supply Rails
        4. 7.2.2.4 Additional Information
      3. 7.2.3 Octal Serial Peripheral Interface (OSPI) and Quad Serial Peripheral Interface (QSPI)
        1. 7.2.3.1 IO Power Supply
        2. 7.2.3.2 OSPI / QSPI Reset
        3. 7.2.3.3 Signals Termination
        4. 7.2.3.4 Loopback Clock
        5. 7.2.3.5 Interface to Multiple Devices
        6. 7.2.3.6 Capacitors for the Power Supply Rails
      4. 7.2.4 General-Purpose Memory Controller (GPMC)
        1. 7.2.4.1 IO Power Supply
        2. 7.2.4.2 GPMC Interface
        3. 7.2.4.3 Memory (Attached Device) Reset
        4. 7.2.4.4 Signals Termination
          1. 7.2.4.4.1 GPMC NAND
        5. 7.2.4.5 Capacitors for the Power Supply Rails
    3. 7.3 External Communication Interface (Ethernet (CPSW3G), USB2.0, PRUSS, UART and CAN)
      1. 7.3.1 Ethernet Interface Using CPSW3G (Common Platform Ethernet Switch 3-Port Gigabit)
        1. 7.3.1.1 IO Power Supply
        2. 7.3.1.2 Ethernet PHY Reset
        3. 7.3.1.3 Ethernet PHY Pin Strapping
        4. 7.3.1.4 Ethernet PHY (and MAC) Operation and Media Independent Interface (MII) Clock
          1. 7.3.1.4.1 Crystal
          2. 7.3.1.4.2 Oscillator
          3. 7.3.1.4.3 Processor Clock Output (CLKOUT0)
        5. 7.3.1.5 MAC (Data, Control and Clock) Interface Signals Termination
        6. 7.3.1.6 MAC (Media Access Controller) to MAC Interface
        7. 7.3.1.7 MDIO (Management Data Input/Output) Interface
        8. 7.3.1.8 Ethernet MDI (Medium Dependent Interface) Including Magnetics
        9. 7.3.1.9 Capacitors for the Power Supply Rails
      2. 7.3.2 Universal Serial Bus (USB2.0)
        1. 7.3.2.1 USBn (0..1) Used
          1. 7.3.2.1.1 USB Host Interface
          2. 7.3.2.1.2 USB Device Interface
          3. 7.3.2.1.3 USB Dual-Role-Device Interface
          4. 7.3.2.1.4 USB Type-C
        2. 7.3.2.2 USBn (0..1) Not Used
        3. 7.3.2.3 Additional Information
      3. 7.3.3 Programmable Real-Time Unit Subsystem (PRUSS)
        1. 7.3.3.1 AM625 / AM623 / AM625SIP / AM625-Q1 / AM620-Q1
        2. 7.3.3.2 AM62A7 / AM62A3 and AM62P / AM62P-Q1
      4. 7.3.4 Universal Asynchronous Receiver/Transmitter (UART)
      5. 7.3.5 Controller Area Network (CAN)
    4. 7.4 On-Board Synchronous Communication Interface (MCSPI, MCASP and I2C)
      1. 7.4.1 Multichannel Serial Peripheral Interface (MCSPI) and Multichannel Audio Serial Ports (MCASP)
      2. 7.4.2 Inter-Integrated Circuit (I2C)
    5. 7.5 User Interface (CSIRX0, DPI, OLDI, DSI), GPIO and Hardware Diagnostics
      1. 7.5.1 Camera Serial Interface (CSI-Rx (CSI-2 port, CSIRX0 Instance))
        1. 7.5.1.1 CSIRX0 Used
        2. 7.5.1.2 CSIRX0 Not Used
      2. 7.5.2 Display Subsystem
        1. 7.5.2.1 Display Parallel Interface (DPI)
          1. 7.5.2.1.1 AM625 / AM623 / AM625SIP / AM625-Q1 and AM62A7 / AM62A3 and AM62P / AM62P-Q1
            1. 7.5.2.1.1.1 IO Power Supply
            2. 7.5.2.1.1.2 DPI (Attached Device) Reset
            3. 7.5.2.1.1.3 Connection
            4. 7.5.2.1.1.4 Signals Termination
            5. 7.5.2.1.1.5 Capacitors for the Power Supply Rails
          2. 7.5.2.1.2 AM620-Q1
        2. 7.5.2.2 Open LVDS Display Interface (OLDI)
          1. 7.5.2.2.1 AM625 / AM623 / AM625SIP / AM625-Q1 and AM62P / AM62P-Q1
            1. 7.5.2.2.1.1 OLDI0 Used
              1. 7.5.2.2.1.1.1 IO Power Supply
              2. 7.5.2.2.1.1.2 OLDI (Attached Device) Reset
              3. 7.5.2.2.1.1.3 OLDI Interface Compatibility
              4. 7.5.2.2.1.1.4 Capacitors for the Power Supply Rails
            2. 7.5.2.2.1.2 OLDI0 Not Used
            3. 7.5.2.2.1.3 Additional Information
          2. 7.5.2.2.2 AM620-Q1 and AM62A7 / AM62A3
        3. 7.5.2.3 Display Serial Interface (DSI)
          1. 7.5.2.3.1 AM625 / AM623 / AM625SIP / AM625-Q1 / AM620-Q1 and AM62A7 / AM62A3
          2. 7.5.2.3.2 AM62P / AM62P-Q1
            1. 7.5.2.3.2.1 DSITX0 Used
            2. 7.5.2.3.2.2 DSITX0 Not Used
      3. 7.5.3 General Purpose Input/Output (GPIO)
        1. 7.5.3.1 CLKOUT Available on GPIO
        2. 7.5.3.2 Connection and External Buffering
        3. 7.5.3.3 Additional Information
      4. 7.5.4 On-board Hardware Diagnostics
        1. 7.5.4.1 Monitoring of On-Board Supply Voltages Using Processor
          1. 7.5.4.1.1 Voltage Monitor Pins Used
          2. 7.5.4.1.2 Voltage Monitor Pins Not Used
        2. 7.5.4.2 Internal Temperature Monitoring
        3. 7.5.4.3 Connection of Error Signal Output (MCU_ERRORn)
        4. 7.5.4.4 High Frequency Oscillator (MCU_OSC0) Clock Loss Detection
    6. 7.6 Verifying Board Level Design Issues
      1. 7.6.1 Processor Pin Configuration Using Pinmux Tool
      2. 7.6.2 Schematics Configurations
      3. 7.6.3 Connecting Supply Rails to Pullups
      4. 7.6.4 Peripheral (Sub System) Clock Outputs
      5. 7.6.5 General Debug
        1. 7.6.5.1 Clock Output for Board Bring-Up, Test or Debug
        2. 7.6.5.2 Additional Information
  11. Layout Notes (Added on the Schematic)
  12. Custom Board Design Simulation
  13. 10Additional References
    1. 10.1 FAQ Covering AM6xx Processor Family
    2. 10.2 FAQs - Processor Product Family Wise
    3. 10.3 Processor Attached Devices
  14. 11Summary
  15. 12References
    1. 12.1 AM625 / AM623 / AM625SIP / AM625-Q1 / AM620-Q1
    2. 12.2 AM62A7 / AM62A3 / AM62A7-Q1 / AM62A3-Q1
    3. 12.3 AM62P / AM62P-Q1
    4. 12.4 Common for all Family of Processors
    5. 12.5 Master List of Available FAQs - Processor Family Wise
    6. 12.6 FAQs Including Software Related FAQs
    7. 12.7 FAQs for Attached Devices
  16. 13Terminology
  17. 14Revision History
Processor Clock Output (CLKOUT0)

For optimizing the design, the processor clock output (CLKOUT0) can be used as clock input to the EPHY. Clock output is buffered internally and is intended to used for a point-to-point clock topology. A series resistor is recommended at the source side of the CLKOUT0 to minimize reflections.

RGMII EPHYs require a 25 MHz clock input that is not synchronous to any other signals. So, this signal will not have any timing requirements, but it is important the EPHY does not receive any non-monotonic transitions on its clock input.

RMII EPHY clocking option changes with the EPHY controller (master) or device (slave) configuration.

When configured as controller, RMII EPHYs (most) require a 25 MHz input clock that is not synchronous to any other signals. The 25 MHz clock signal does not have any timing requirements relative the processor, but it is important to make sure the EPHY does not receive any non-monotonic transitions on its clock input.

The RMII EPHY provides the 50 MHz clock output to the MAC. For this use case, the 50 MHz data transfer clock is delayed to the MAC relative to the EPHY. This shifts clock to data timing relationship which may erode the timing margin. This could be problematic for some designs if this delay is too large.

When configured as device, the MAC and the EPHY uses a 50 MHz common clock that is synchronous to both transmit and receive data. The 50 MHz clock is defined in the RMII specification as a common data transfer clock signal that is used by both the MAC and the EPHY, where transitions are expected to arrive simultaneously at the MAC and EPHY device pins. This provides better timing margin for both transmit and receive data transfers. It is also important that the MAC and EPHY do not receive any non-monotonic transitions on their clock inputs. To ensure the clock signal integrity, it is highly recommended this clock signal is routed through a two-output phase aligned buffer. Recommend using equal length signal traces that are ½ the length of the data signals for connecting the clock buffer outputs, where one clock output connects to the MAC and the other connects to the EPHY.

For RMII interface, the recommended configuration is RMII Interface Typical Application (External Clock Source) explained in the device-specific TRM. If RMII Interface Typical Application (Internal Clock Source) configuration explained in the device-specific TRM is used, the performance has to be validated on a board or system level. Provision for an external clock for initial performance testing and comparison is recommended. The Ethernet performance (RGMII) has been validated on the processor and the EPHY with 25 MHz clock.

The CLKOUT0 signal function can be used to source a 25 MHz or a 50 MHz clock input to the EPHY. However, this would require the software to configure the clock output. This configuration cannot be used if the board design needs to support Ethernet boot. This clock is likely to glitch anytime the configuration is changed.

Based on the selected processor, the processor automatically begins sourcing the device reference clock (MCU_OSC0, enabled by default) to the WKUP_CLKOUT0 pin as soon as the device is released from reset (MCU_PORz 0 -> 1). The processor clock output does not glitch after it begins to toggle. However, the first high or low pulse could be short since reset is released asynchronous to the HFOSC0 clock.

The board designer needs to make sure the EPHYs are held in reset for a specified minimum reset hold time after the respective clocks are valid.

TI does not define performance of the processor clock outputs because clock performance is influenced by many variables unique to each custom board design. The board designer will have to validate timing of all peripherals by using their actual PCB delays, min/max output delay characteristics, and minimum setup/hold requirements of each device to confirm there is enough timing margin.