SNLA224B June   2014  â€“ October 2025 DS90UB913A-Q1 , DS90UB954-Q1 , DS90UB960-Q1 , DS90UB9702-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
  5. 2Theory of Operation for Power Over Coax
    1. 2.1 Inductor Characteristics
    2. 2.2 Capacitor Characteristics
    3. 2.3 Inductors versus Ferrite Beads
  6. 3Design Considerations
    1. 3.1 Frequency Range
    2. 3.2 Power Considerations
    3. 3.3 Resistance Considerations
    4. 3.4 Inductor Size Considerations
    5. 3.5 Layout Considerations
  7. 4FPD-Link PoC Requirements
    1. 4.1 Channel Requirements
  8. 5PoC Noise
    1. 5.1 PoC Noise Requirements
    2. 5.2 Measuring VPoC Noise and Pulse
      1. 5.2.1 Requirements
      2. 5.2.2 Measurement Procedure
    3. 5.3 Measuring RIN+ Noise
      1. 5.3.1 Requirements
      2. 5.3.2 Measurement Procedures
    4. 5.4 Causes of PoC Noise
    5. 5.5 Noise Measurement Best Practices
    6. 5.6 Reducing Effects of PoC Noise
  9. 6TI Reviewed PoC Networks
    1. 6.1 PoC Network from FPD-Link III Data Sheet
    2. 6.2 Murata FPD3 Networks
      1. 6.2.1 Murata FPD3 Design 1
      2. 6.2.2 Murata FPD3 Design 2
      3. 6.2.3 Murata FPD3 Design 3
      4. 6.2.4 Murata FPD3 Design 4
      5. 6.2.5 Murata FPD3 Design 5
      6. 6.2.6 Murata FPD3 Design 6
    3. 6.3 TDK FPD3 Networks
      1. 6.3.1 TDK FPD3 Design 1
      2. 6.3.2 TDK FPD3 Design 2
      3. 6.3.3 TDK FPD3 Design 3
      4. 6.3.4 TDK FPD3 Design 4
      5. 6.3.5 TDK FPD3 Design 5
      6. 6.3.6 TDK FPD3 Design 6
      7. 6.3.7 TDK FPD3 Design 7
      8. 6.3.8 TDK FPD3 Design 8
    4. 6.4 Coilcraft FPD3 Networks
      1. 6.4.1 Coilcraft FPD3 Design 1
      2. 6.4.2 Coilcraft FPD3 Design 2
      3. 6.4.3 Coilcraft FPD3 Design 3
      4. 6.4.4 Coilcraft FPD3 Design 4
      5. 6.4.5 Coilcraft FPD3 Design 5
      6. 6.4.6 Coilcraft FPD3 Design 6
      7. 6.4.7 Coilcraft FPD3 Design 7
      8. 6.4.8 Coilcraft FPD3 Design 8
      9. 6.4.9 Coilcraft FPD3 Design 9
    5. 6.5 Murata FPD4 Networks
      1. 6.5.1  Design 1
      2. 6.5.2  Design 2
      3. 6.5.3  Design 3
      4. 6.5.4  Design 4
      5. 6.5.5  Design 5
      6. 6.5.6  Design 6
      7. 6.5.7  Design 7
      8. 6.5.8  Design 8
      9. 6.5.9  Design 9
      10. 6.5.10 Design 10
      11. 6.5.11 Design 11
      12. 6.5.12 Design 12
      13. 6.5.13 Design 13
      14. 6.5.14 Design 14
      15. 6.5.15 Design 15
      16. 6.5.16 Design 16
      17. 6.5.17 Design 17
      18. 6.5.18 Design 18
      19. 6.5.19 Design 19
      20. 6.5.20 Design 20
      21. 6.5.21 Design 21
      22. 6.5.22 Design 22
      23. 6.5.23 Design 23
      24. 6.5.24 Design 24
      25. 6.5.25 Design 25
      26. 6.5.26 Design 26
      27. 6.5.27 Design 27
      28. 6.5.28 Design 28
      29. 6.5.29 Design 29
    6. 6.6 TDK FPD4 Networks
      1. 6.6.1  Design 1
      2. 6.6.2  Design 2
      3. 6.6.3  Design 3
      4. 6.6.4  Design 4
      5. 6.6.5  Design 5
      6. 6.6.6  Design 6
      7. 6.6.7  Design 7
      8. 6.6.8  Design 8
      9. 6.6.9  Design 9
      10. 6.6.10 Design 10
      11. 6.6.11 Design 11
      12. 6.6.12 Design 12
      13. 6.6.13 Design 13
      14. 6.6.14 Design 14
      15. 6.6.15 Design 15
      16. 6.6.16 Design 16
      17. 6.6.17 Design 17
      18. 6.6.18 Design 18
      19. 6.6.19 Design 19
      20. 6.6.20 Design 20
      21. 6.6.21 Design 21
      22. 6.6.22 Design 22
      23. 6.6.23 Design 23
    7. 6.7 Coilcraft FPD4 Networks
      1. 6.7.1  Design 1
      2. 6.7.2  Design 2
      3. 6.7.3  Design 3
      4. 6.7.4  Design 4
      5. 6.7.5  Design 5
      6. 6.7.6  Design 6
      7. 6.7.7  Design 7
      8. 6.7.8  Design 8
      9. 6.7.9  Design 9
      10. 6.7.10 Design 10
      11. 6.7.11 Design 11
      12. 6.7.12 Design 12
      13. 6.7.13 Design 13
      14. 6.7.14 Design 14
      15. 6.7.15 Design 15
  10. 7Summary
  11. 8References
  12. 9Revision History

Abstract

Automotive applications continue to advance with new features such as 360-degree eye views and interior vehicle monitoring to check for driver awareness. To support these features multiple cameras must be installed around and within the vehicle, with each camera requiring additional hardware and cabling components. FPDLink devices can simplify automotive system designs by transmitting both video data and power over a single standard coaxial cable between the camera and serializer. This decreases weight, removes the need for separate power supplies, and minimizes cabling costs.

This application note outlines design requirements and guidelines for implementing an FPD-Link ADAS system based around a Power-over-Coax (PoC) network. The application note also provides several TI reviewed PoC networks for use with FPD-Link IV and III devices.