SNLA224B June   2014  â€“ October 2025 DS90UB913A-Q1 , DS90UB954-Q1 , DS90UB960-Q1 , DS90UB9702-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
  5. 2Theory of Operation for Power Over Coax
    1. 2.1 Inductor Characteristics
    2. 2.2 Capacitor Characteristics
    3. 2.3 Inductors versus Ferrite Beads
  6. 3Design Considerations
    1. 3.1 Frequency Range
    2. 3.2 Power Considerations
    3. 3.3 Resistance Considerations
    4. 3.4 Inductor Size Considerations
    5. 3.5 Layout Considerations
  7. 4FPD-Link PoC Requirements
    1. 4.1 Channel Requirements
  8. 5PoC Noise
    1. 5.1 PoC Noise Requirements
    2. 5.2 Measuring VPoC Noise and Pulse
      1. 5.2.1 Requirements
      2. 5.2.2 Measurement Procedure
    3. 5.3 Measuring RIN+ Noise
      1. 5.3.1 Requirements
      2. 5.3.2 Measurement Procedures
    4. 5.4 Causes of PoC Noise
    5. 5.5 Noise Measurement Best Practices
    6. 5.6 Reducing Effects of PoC Noise
  9. 6TI Reviewed PoC Networks
    1. 6.1 PoC Network from FPD-Link III Data Sheet
    2. 6.2 Murata FPD3 Networks
      1. 6.2.1 Murata FPD3 Design 1
      2. 6.2.2 Murata FPD3 Design 2
      3. 6.2.3 Murata FPD3 Design 3
      4. 6.2.4 Murata FPD3 Design 4
      5. 6.2.5 Murata FPD3 Design 5
      6. 6.2.6 Murata FPD3 Design 6
    3. 6.3 TDK FPD3 Networks
      1. 6.3.1 TDK FPD3 Design 1
      2. 6.3.2 TDK FPD3 Design 2
      3. 6.3.3 TDK FPD3 Design 3
      4. 6.3.4 TDK FPD3 Design 4
      5. 6.3.5 TDK FPD3 Design 5
      6. 6.3.6 TDK FPD3 Design 6
      7. 6.3.7 TDK FPD3 Design 7
      8. 6.3.8 TDK FPD3 Design 8
    4. 6.4 Coilcraft FPD3 Networks
      1. 6.4.1 Coilcraft FPD3 Design 1
      2. 6.4.2 Coilcraft FPD3 Design 2
      3. 6.4.3 Coilcraft FPD3 Design 3
      4. 6.4.4 Coilcraft FPD3 Design 4
      5. 6.4.5 Coilcraft FPD3 Design 5
      6. 6.4.6 Coilcraft FPD3 Design 6
      7. 6.4.7 Coilcraft FPD3 Design 7
      8. 6.4.8 Coilcraft FPD3 Design 8
      9. 6.4.9 Coilcraft FPD3 Design 9
    5. 6.5 Murata FPD4 Networks
      1. 6.5.1  Design 1
      2. 6.5.2  Design 2
      3. 6.5.3  Design 3
      4. 6.5.4  Design 4
      5. 6.5.5  Design 5
      6. 6.5.6  Design 6
      7. 6.5.7  Design 7
      8. 6.5.8  Design 8
      9. 6.5.9  Design 9
      10. 6.5.10 Design 10
      11. 6.5.11 Design 11
      12. 6.5.12 Design 12
      13. 6.5.13 Design 13
      14. 6.5.14 Design 14
      15. 6.5.15 Design 15
      16. 6.5.16 Design 16
      17. 6.5.17 Design 17
      18. 6.5.18 Design 18
      19. 6.5.19 Design 19
      20. 6.5.20 Design 20
      21. 6.5.21 Design 21
      22. 6.5.22 Design 22
      23. 6.5.23 Design 23
      24. 6.5.24 Design 24
      25. 6.5.25 Design 25
      26. 6.5.26 Design 26
      27. 6.5.27 Design 27
      28. 6.5.28 Design 28
      29. 6.5.29 Design 29
    6. 6.6 TDK FPD4 Networks
      1. 6.6.1  Design 1
      2. 6.6.2  Design 2
      3. 6.6.3  Design 3
      4. 6.6.4  Design 4
      5. 6.6.5  Design 5
      6. 6.6.6  Design 6
      7. 6.6.7  Design 7
      8. 6.6.8  Design 8
      9. 6.6.9  Design 9
      10. 6.6.10 Design 10
      11. 6.6.11 Design 11
      12. 6.6.12 Design 12
      13. 6.6.13 Design 13
      14. 6.6.14 Design 14
      15. 6.6.15 Design 15
      16. 6.6.16 Design 16
      17. 6.6.17 Design 17
      18. 6.6.18 Design 18
      19. 6.6.19 Design 19
      20. 6.6.20 Design 20
      21. 6.6.21 Design 21
      22. 6.6.22 Design 22
      23. 6.6.23 Design 23
    7. 6.7 Coilcraft FPD4 Networks
      1. 6.7.1  Design 1
      2. 6.7.2  Design 2
      3. 6.7.3  Design 3
      4. 6.7.4  Design 4
      5. 6.7.5  Design 5
      6. 6.7.6  Design 6
      7. 6.7.7  Design 7
      8. 6.7.8  Design 8
      9. 6.7.9  Design 9
      10. 6.7.10 Design 10
      11. 6.7.11 Design 11
      12. 6.7.12 Design 12
      13. 6.7.13 Design 13
      14. 6.7.14 Design 14
      15. 6.7.15 Design 15
  10. 7Summary
  11. 8References
  12. 9Revision History

Frequency Range

To design an appropriate PoC network, consider the frequency range that the network must be able to filter. For example, an FPD-Link IV system using the DS90UB971-Q1 and DS90UB9702-Q1 running in synchronous mode can support a forward channel rate of 7.55Gbps (3.775GHz) and a back-channel rate of 47.1875MHz. The PoC network must effectively filter a frequency range from half the back-channel frequency to the forward channel frequency.

Table 4-2 shows each serializer device compatible with the DS09UB9702-Q1 and their forward and back channel communication frequencies when paired with the DS90UB9702-Q1 using the default back-channel rate settings. The last column shows the frequency range that the PoC network must be able to filter.

Table 3-1 Serializer Frequency Ranges
DeserializerSerializerModeBC FrequencyFC FrequencyPoC Filter Frequency Range
DS90UB9702-Q1DS90UB913A-Q1Non-Synchronous2.36MHz700MHz1.18MHz - 700MHz
DS90UB933-Q1Non-Synchronous2.36MHz933MHz1.18MHz - 933MHz
DS90UB951-Q1Non-Synchronous9.44MHz2.43GHz4.72MHz - 2.43GHz
DS90UB935-Q1Synchronous47.19MHz1.89GHz23.59MHz - 1.89GHz
Non-Synchronous9.44MHz2.08GHz4.72MHz - 2.08GHz
DS90UB953-Q1Synchronous47.19MHz1.89GHz23.59MHz - 1.89GHz
Non-Synchronous9.44MHz2.08GHz4.72MHz - 2.08GHz
DS90UB971-Q1Synchronous47.19MHz3.775GHz23.59MHz - 3.775GHz
Non-Synchronous9.44MHz3.775GHz4.72MHz - 3.775GHz