SNLA224B June   2014  â€“ October 2025 DS90UB913A-Q1 , DS90UB954-Q1 , DS90UB960-Q1 , DS90UB9702-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
  5. 2Theory of Operation for Power Over Coax
    1. 2.1 Inductor Characteristics
    2. 2.2 Capacitor Characteristics
    3. 2.3 Inductors versus Ferrite Beads
  6. 3Design Considerations
    1. 3.1 Frequency Range
    2. 3.2 Power Considerations
    3. 3.3 Resistance Considerations
    4. 3.4 Inductor Size Considerations
    5. 3.5 Layout Considerations
  7. 4FPD-Link PoC Requirements
    1. 4.1 Channel Requirements
  8. 5PoC Noise
    1. 5.1 PoC Noise Requirements
    2. 5.2 Measuring VPoC Noise and Pulse
      1. 5.2.1 Requirements
      2. 5.2.2 Measurement Procedure
    3. 5.3 Measuring RIN+ Noise
      1. 5.3.1 Requirements
      2. 5.3.2 Measurement Procedures
    4. 5.4 Causes of PoC Noise
    5. 5.5 Noise Measurement Best Practices
    6. 5.6 Reducing Effects of PoC Noise
  9. 6TI Reviewed PoC Networks
    1. 6.1 PoC Network from FPD-Link III Data Sheet
    2. 6.2 Murata FPD3 Networks
      1. 6.2.1 Murata FPD3 Design 1
      2. 6.2.2 Murata FPD3 Design 2
      3. 6.2.3 Murata FPD3 Design 3
      4. 6.2.4 Murata FPD3 Design 4
      5. 6.2.5 Murata FPD3 Design 5
      6. 6.2.6 Murata FPD3 Design 6
    3. 6.3 TDK FPD3 Networks
      1. 6.3.1 TDK FPD3 Design 1
      2. 6.3.2 TDK FPD3 Design 2
      3. 6.3.3 TDK FPD3 Design 3
      4. 6.3.4 TDK FPD3 Design 4
      5. 6.3.5 TDK FPD3 Design 5
      6. 6.3.6 TDK FPD3 Design 6
      7. 6.3.7 TDK FPD3 Design 7
      8. 6.3.8 TDK FPD3 Design 8
    4. 6.4 Coilcraft FPD3 Networks
      1. 6.4.1 Coilcraft FPD3 Design 1
      2. 6.4.2 Coilcraft FPD3 Design 2
      3. 6.4.3 Coilcraft FPD3 Design 3
      4. 6.4.4 Coilcraft FPD3 Design 4
      5. 6.4.5 Coilcraft FPD3 Design 5
      6. 6.4.6 Coilcraft FPD3 Design 6
      7. 6.4.7 Coilcraft FPD3 Design 7
      8. 6.4.8 Coilcraft FPD3 Design 8
      9. 6.4.9 Coilcraft FPD3 Design 9
    5. 6.5 Murata FPD4 Networks
      1. 6.5.1  Design 1
      2. 6.5.2  Design 2
      3. 6.5.3  Design 3
      4. 6.5.4  Design 4
      5. 6.5.5  Design 5
      6. 6.5.6  Design 6
      7. 6.5.7  Design 7
      8. 6.5.8  Design 8
      9. 6.5.9  Design 9
      10. 6.5.10 Design 10
      11. 6.5.11 Design 11
      12. 6.5.12 Design 12
      13. 6.5.13 Design 13
      14. 6.5.14 Design 14
      15. 6.5.15 Design 15
      16. 6.5.16 Design 16
      17. 6.5.17 Design 17
      18. 6.5.18 Design 18
      19. 6.5.19 Design 19
      20. 6.5.20 Design 20
      21. 6.5.21 Design 21
      22. 6.5.22 Design 22
      23. 6.5.23 Design 23
      24. 6.5.24 Design 24
      25. 6.5.25 Design 25
      26. 6.5.26 Design 26
      27. 6.5.27 Design 27
      28. 6.5.28 Design 28
      29. 6.5.29 Design 29
    6. 6.6 TDK FPD4 Networks
      1. 6.6.1  Design 1
      2. 6.6.2  Design 2
      3. 6.6.3  Design 3
      4. 6.6.4  Design 4
      5. 6.6.5  Design 5
      6. 6.6.6  Design 6
      7. 6.6.7  Design 7
      8. 6.6.8  Design 8
      9. 6.6.9  Design 9
      10. 6.6.10 Design 10
      11. 6.6.11 Design 11
      12. 6.6.12 Design 12
      13. 6.6.13 Design 13
      14. 6.6.14 Design 14
      15. 6.6.15 Design 15
      16. 6.6.16 Design 16
      17. 6.6.17 Design 17
      18. 6.6.18 Design 18
      19. 6.6.19 Design 19
      20. 6.6.20 Design 20
      21. 6.6.21 Design 21
      22. 6.6.22 Design 22
      23. 6.6.23 Design 23
    7. 6.7 Coilcraft FPD4 Networks
      1. 6.7.1  Design 1
      2. 6.7.2  Design 2
      3. 6.7.3  Design 3
      4. 6.7.4  Design 4
      5. 6.7.5  Design 5
      6. 6.7.6  Design 6
      7. 6.7.7  Design 7
      8. 6.7.8  Design 8
      9. 6.7.9  Design 9
      10. 6.7.10 Design 10
      11. 6.7.11 Design 11
      12. 6.7.12 Design 12
      13. 6.7.13 Design 13
      14. 6.7.14 Design 14
      15. 6.7.15 Design 15
  10. 7Summary
  11. 8References
  12. 9Revision History

Introduction

Advanced driver assistance systems (ADAS) have become increasingly more complex including applications such as driver monitoring, driver assistance features, and in some cases autonomous driving. These systems often use multiple types of sensors and cameras spread across various locations of the vehicle. As the number of sensors and cameras continue to increase, the total length and number of cables required to transfer the high-speed data and power signals will increase as well. This results in extensive cabling, which is costly and can complicate system implementation.

FPD-Link SerDes chipsets eliminate the need to have a separate cable to deliver power from the deserializer board to the serializer and sensor, which allows ADAS systems to support an increased number of sensors without an extensive amount of cabling. This is achieved by using Power over Coax (PoC) filters to separate DC power from the high speed FPD-Link signal, allowing power to be transferred over the same coax cable as the FPD-Link data.