SWRA670A April   2020  – October 2022 CC1350 , CC1352P , CC1352R , CC2400 , CC2420 , CC2430 , CC2500 , CC2520 , CC2530 , CC2538 , CC2540 , CC2541 , CC2543 , CC2544 , CC2545 , CC2564 , CC2590 , CC2591 , CC2592 , CC2620 , CC2630 , CC2640 , CC2650 , CC2652P , CC2652R , CC2652R7 , CC2652RSIP , CC3100 , CC3120 , CC3135 , CC3135MOD , CC3200 , CC3200MOD , CC3220MOD , CC3220MODA , CC3220R , CC3220S , CC3220SF , CC3230S , CC3230SF , CC3235MODAS , CC3235MODASF , CC3235MODS , CC3235MODSF , CC3235S , CC3235SF , WL1801MOD , WL1805MOD , WL1807MOD , WL1831

 

  1.   CE Regulations for SRDs Operating in License-Free 2.4 GHz/5 GHz Bands
  2.   Trademarks
  3. Introduction
  4. Regulation Overview
    1. 2.1 CEPT ERC Recommendation 70-03
  5. Radio Equipment Directive (RED)
    1. 3.1 Essential Requirements
    2. 3.2 Obligations of Manufacturers
    3. 3.3 Conformity of Radio Equipment
      1. 3.3.1 Presumption of Conformity of Radio Equipment
      2. 3.3.2 Conformity Assessment Procedure
      3. 3.3.3 EU Declaration of Conformity
      4. 3.3.4 Rules and Conditions for Affixing the CE Marking
      5. 3.3.5 Technical Documentation
    4. 3.4 Restrictions on Putting into Service
  6. ETSI EN 300 440
    1. 4.1 Technical Requirements
      1. 4.1.1 Environmental Profile
    2. 4.2 Transmitter Requirements
      1. 4.2.1 Transmitter Maximum Radiated Power (e.i.r.p.)
      2. 4.2.2 Permitted Range of Operating Frequencies
      3. 4.2.3 Unwanted Emissions in the Spurious Domain
      4. 4.2.4 Duty Cycle
      5. 4.2.5 Additional Requirements for FHSS Equipment
    3. 4.3 Receiver Requirements
      1. 4.3.1 Receiver Categories
      2. 4.3.2 Receiver Performance Criteria
      3. 4.3.3 Adjacent Channel Selectivity
      4. 4.3.4 Blocking or Desensitization
      5. 4.3.5 Spurious Radiations - Receiver
    4. 4.4 Spectrum Access Techniques
      1. 4.4.1 Listen Before Talk
        1. 4.4.1.1 LBT Timing Paramters
        2. 4.4.1.2 Receiver LBT Threshold and Transmitter Max On-Time
      2. 4.4.2 Detect And Avoid Technique (DAA)
  7. ETSI EN 300 328
    1. 5.1 Technical Requirements
      1. 5.1.1 Environmental Profile
    2. 5.2 Equipment Types
      1. 5.2.1 Wideband Data Transmission Equipment Types
      2. 5.2.2 Adaptive and Non-Adaptive Equipment
      3. 5.2.3 Receiver Categories
      4. 5.2.4 Antenna Types
    3. 5.3 Conformance Requirements
      1. 5.3.1 Conformance Requirements for Frequency Hopping Equipment
        1. 5.3.1.1  RF Output Power
        2. 5.3.1.2  Duty Cycle
        3. 5.3.1.3  Accumulated Transit Time, Frequency Occupation and Hopping Sequence
        4. 5.3.1.4  Hopping Frequency Separation
        5. 5.3.1.5  Medium Utilization (MU) Factor
        6. 5.3.1.6  Adaptivity (Adaptive FHSS)
          1. 5.3.1.6.1 Adaptive FHSS Using LBT
          2. 5.3.1.6.2 Adaptive FHSS Using DAA
          3. 5.3.1.6.3 Adaptive FHSSS - Short Control Signaling Transmissions
        7. 5.3.1.7  Occupied Channel Bandwidth
        8. 5.3.1.8  Transmitter Unwanted Emissions in the Out-of-Band Domain
        9. 5.3.1.9  Transmitter Unwanted Emissions in the Spurious Domain
        10. 5.3.1.10 Receiver Spurious Emissions
        11. 5.3.1.11 Receiver Blocking
        12. 5.3.1.12 Geo-Location Capability
      2. 5.3.2 Conformance Requirements for Wideband Data Transmission Equipment (Non-FHSS)
        1. 5.3.2.1  RF Output Power
        2. 5.3.2.2  Power Spectral Density
        3. 5.3.2.3  Duty Cycle, Tx-sequence and Tx-gap
        4. 5.3.2.4  Medium Utilization Factor
        5. 5.3.2.5  Adaptivity (Non-FHSS)
          1. 5.3.2.5.1 Adaptive Non-FHSS using LBT
            1. 5.3.2.5.1.1 Frame Based Equipment
            2. 5.3.2.5.1.2 Load Based Equipment
          2. 5.3.2.5.2 Adaptive Non-FHSS Using DAA
          3. 5.3.2.5.3 Adaptive Non-FHSS - Short Control Signaling Transmissions
        6. 5.3.2.6  Occupied Channel Bandwidth
        7. 5.3.2.7  Transmitter Unwanted Emissions in the Out-of-Band Domain
        8. 5.3.2.8  74
        9. 5.3.2.9  Transmitter Unwanted Emissions in the Spurious Domain
        10. 5.3.2.10 Receiver Spurious Emissions
        11. 5.3.2.11 Receiving Blocking
        12. 5.3.2.12 Geo-Location Capability
  8. ETSI EN 301 893
    1. 6.1 Technical Requirements
      1. 6.1.1 Environmental Profile
    2. 6.2 Conformance Requirements
      1. 6.2.1  Nominal Center Frequencies
      2. 6.2.2  Nominal Channel Bandwidth and Occupied Channel Bandwidth
      3. 6.2.3  RF Output Power, Transmit Power Control (TPC) and Power Density
      4. 6.2.4  Transmitter Unwanted Emissions - Outside the 5 GHz RLAN Bands
      5. 6.2.5  Transmitter Unwanted Emissions - Within 5 GHz RLAN Bands
      6. 6.2.6  Receiver Spurious Emissions
      7. 6.2.7  Dynamic Frequency Selection (DFS)
      8. 6.2.8  Adaptivity (Channel Access Mechanism)
        1. 6.2.8.1 Frame Based Equipment (FBE)
          1. 6.2.8.1.1 Initiating Device Channel Access Mechanism
          2. 6.2.8.1.2 Responding Device Channel Access Mechanism
        2. 6.2.8.2 Load Based Equipment (LBE)
          1. 6.2.8.2.1 Device Types - Load Based Equipment
          2. 6.2.8.2.2 Multi-Channel Operation - Load Based Equipment
          3. 6.2.8.2.3 Priority Classes - Load Based Equipment
          4. 6.2.8.2.4 ED Threshold Level - Load Based Equipment
          5. 6.2.8.2.5 Initiating Device Channel Access Mechanism - Load Based Equipment
          6. 6.2.8.2.6 Responding Device Channel Access Mechanism - Load Based Equipment
        3. 6.2.8.3 Short Control Signalling Transmissions (FBE and LBE)
      9. 6.2.9  Receiver Blocking
      10. 6.2.10 User Access Restrictions
      11. 6.2.11 Geo-Location Capability
  9. ETSI EN 301 489
    1. 7.1 Technical Requirements
    2. 7.2 Environment Classification
    3. 7.3 Test Conditions
    4. 7.4 RF Exclusion Bands
    5. 7.5 Performance Assessment
      1. 7.5.1 Equipment Classification
    6. 7.6 Performance Criteria
      1. 7.6.1 Minimum Performance Level
    7. 7.7 Emission Requirements
      1. 7.7.1 Radiated Emissions - Enclosure Port
      2. 7.7.2 Conducted Emissions - DC Power Input/Output Ports
      3. 7.7.3 Conducted Emissions - AC Mains Power Input/Output Ports
      4. 7.7.4 Harmonic Current Emissions - AC Mains Power Input Port
      5. 7.7.5 Voltage Fluctuations and Flicker - AC Mains Power Input Port
      6. 7.7.6 Conducted Emissions - Wired Network Ports
    8. 7.8 Immunity Requirements
      1. 7.8.1 RF Electromagnetic Field (80 MHz to 6000 MHz) - Enclosure Port
      2. 7.8.2 Electrostatic Discharge - Enclosure
      3. 7.8.3 Fast Transients - Common Mode
      4. 7.8.4 RF - Common Mode
      5. 7.8.5 Transients and Surges in the Vehicular Environment
      6. 7.8.6 Voltage Dips and Interruptions
      7. 7.8.7 Surges
  10. IEC 62368-1
    1. 8.1 Safety Requirements
  11. EN 62311
    1. 9.1 Requirements and Limits of EN 62311
  12. 10References
  13. 11Revision History

RF Output Power, Transmit Power Control (TPC) and Power Density

The RF output power is defined as the mean equivalent isotropic radiated power (e.i.r.p.) during a transmission burst.

Transmit Power Control (TPC) is defined as a mechanism to be used by the RLAN device to ensure a mitigation factor of at least 3 dB on the aggregate power from a large number of devices. This requires the RLAN device to have a TPC range from which the lowest value is at least 6 dB below the values for mean e.i.r.p. given in table 36 for devices with TPC.

The Power Density is defined as the mean equivalent isotropically radiated power (e.i.r.p.) density during a transmission burst.

The limits below are applicable to the system as a whole and in any possible configuration. This means that the antenna gain of the integral or dedicated antenna has to be taken into account as well as the additional (beamforming) gain in case of smart antenna systems (devices with multiple transmit chains).

In case of multiple (adjacent or non-adjacent) channels within the same sub-band, the total RF Output Power of all channels in that sub-band should not exceed the limits defined in Table 6-5 and Table 6-6.

In case of multiple, non-adjacent channels operating in separate sub-bands, the total RF Output Power in each of the sub-bands should not exceed the limits defined in Table 6-5 and Table 6-6.

TPC is not required for channels whose nominal bandwidth falls completely within the band 5150 MHz to 5250 MHz.

The limits on RF output power and the Power Density at the highest power level (PH) of the TPC range and without TPC are shown in Table 6-5.

Table 6-5 Limits on RF Output Power and Power Density at the Highest Power Level (PH)
Frequency Range (MHz)Mean e.i.r.p. limit for PH (dBm)Mean e.i.r.p. density limit (dBm/MHz)
With TPCWithout TPCWith TPCWithout TPC
5150 to 5350< 23< 20 / 23 (1)< 10< 7 / 10 (2)
5470 to 5725< 30 (3)< 27 (3)< 17 (3)< 14 (3)
The applicable limit is 20 dBm, except for transmissions whose nominal bandwidth falls completely within the band 5150 MHz to 5250 MHz, in which case the applicable limit is 23 dBm.
The applicable limit is 7 dBm/MHz, except for transmissions whose nominal bandwidth falls completely within the band 5150 MHz to 5250 MHz, in which case the applicable limit is 10 dBm/MHz.
Slave devices without a Radar Interference Detection function should comply with the limits for the frequency range 5250 MHz to 5350 MHz.

For devices using TPC, the limits on RF output power at the lowest power level (PL) of the TPC range are shown in Table 6-6.

Table 6-6 Limits on RF Output Power at the Lowest Power Level (PL) of TPC
Frequency Range (MHz)Mean e.i.r.p. limit for PL (dBm)
5250 to 5350< 17
5470 to 5725< 24 (1)
Slave devices without a Radar Interference Detection function should comply with the limits for the frequency range 5250 MHz to 5350 MHz.