SLVSF07E july   2021  – august 2023 TPS7H5001-SP , TPS7H5002-SP , TPS7H5003-SP , TPS7H5004-SP

PRODMIX  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Device Comparison Table
  7. Device Options
  8. Pin Configuration and Functions
  9. Specifications
    1. 8.1  Absolute Maximum Ratings
    2. 8.2  ESD Ratings
    3. 8.3  Recommended Operating Conditions
    4. 8.4  Thermal Information
    5. 8.5  Electrical Characteristics: All Devices
    6. 8.6  Electrical Characteristics: TPS7H5001-SP
    7. 8.7  Electrical Characteristics: TPS7H5002-SP
    8. 8.8  Electrical Characteristics: TPS7H5003-SP
    9. 8.9  Electrical Characteristics: TPS7H5004-SP
    10. 8.10 Typical Characteristics
  10. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  VIN and VLDO
      2. 9.3.2  Start-Up
      3. 9.3.3  Enable and Undervoltage Lockout (UVLO)
      4. 9.3.4  Voltage Reference
      5. 9.3.5  Error Amplifier
      6. 9.3.6  Output Voltage Programming
      7. 9.3.7  Soft Start (SS)
      8. 9.3.8  Switching Frequency and External Synchronization
        1. 9.3.8.1 Internal Oscillator Mode
        2. 9.3.8.2 External Synchronization Mode
        3. 9.3.8.3 Primary-Secondary Mode
      9. 9.3.9  Primary Switching Outputs (OUTA/OUTB)
      10. 9.3.10 Synchronous Rectifier Outputs (SRA and SRB)
      11. 9.3.11 Dead Time and Leading Edge Blank Time Programmability (PS, SP, and LEB)
      12. 9.3.12 Pulse Skipping
      13. 9.3.13 Duty Cycle Programmability
      14. 9.3.14 Current Sense and PWM Generation (CS_ILIM)
      15. 9.3.15 Hiccup Mode Operation (HICC)
      16. 9.3.16 External Fault Protection (FAULT)
      17. 9.3.17 Slope Compensation (RSC)
      18. 9.3.18 Frequency Compensation
      19. 9.3.19 Thermal Shutdown
    4. 9.4 Device Functional Modes
  11. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1  Switching Frequency
        2. 10.2.2.2  Output Voltage Programming Resistors
        3. 10.2.2.3  Dead Time
        4. 10.2.2.4  Leading Edge Blank Time
        5. 10.2.2.5  Soft-Start Capacitor
        6. 10.2.2.6  Transformer
        7. 10.2.2.7  Main Switching FETs
        8. 10.2.2.8  Synchronous Rectificier FETs
        9. 10.2.2.9  RCD Clamp
        10. 10.2.2.10 Output Inductor
        11. 10.2.2.11 Output Capacitance and Filter
        12. 10.2.2.12 Sense Resistor
        13. 10.2.2.13 Hiccup Capacitor
        14. 10.2.2.14 Frequency Compensation Components
        15. 10.2.2.15 Slope Compensation Resistor
      3. 10.2.3 Application Curves
    3. 10.3 Power Supply Recommendations
    4. 10.4 Layout
      1. 10.4.1 Layout Guidelines
      2. 10.4.2 Layout Example
  12. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • HFT|22
  • KGD|0
  • PW|24
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Leading Edge Blank Time

The leading edge blank time was initially chosen to be roughly 50 ns. This value was the initial approximation based on any ringing or transient spikes that were expected to be seen on the sensed current waveform at the CS_ILIM pin. Using Equation 9 , the value of RLEB was calculated from this desired value.

Equation 75. GUID-20210617-CA0I-49BT-P83X-XJ1MTMTZZLBK-low.svg

The value of RLEB selected was 49.9 kΩ. Note that the ringing and transient spikes on the sensed current waveform will depend heavily on component placement and parastics in the PCB layout. The leading edge blank time should also account for any propagation delay that is inherent to the gate driver being used in the application. As such, the value of RLEB may need to be optimized as the design is tested in accommodate for these factors. Recall that the leading edge blank time is also correlated to the minimum on-time of the device, and extending this value significantly may become a limiting factor for the maximum switching frequency that can be achieved in the design.