JAJSXM1 December   2025 MCT8376Z-Q1

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 説明
  5. デバイス比較表
  6. ピン構成および機能
  7. 仕様
    1. 6.1 絶対最大定格
    2. 6.2 ESD 定格 (車載用)
    3. 6.3 推奨動作条件
    4. 6.4 熱に関する情報
    5. 6.5 電気的特性
    6. 6.6 SPI のタイミング要件
    7. 6.7 SPI スレーブ モードのタイミング
  8. 詳細説明
    1. 7.1 概要
    2. 7.2 機能ブロック図
    3. 7.3 機能説明
      1. 7.3.1  出力段
      2. 7.3.2  PWM 制御モード (1x PWM モード)
        1. 7.3.2.1 アナログ ホール入力構成
        2. 7.3.2.2 デジタル ホール入力構成
        3. 7.3.2.3 非同期変調
        4. 7.3.2.4 同期変調
        5. 7.3.2.5 モーターの動作
      3. 7.3.3  デバイス インターフェイス モード
        1. 7.3.3.1 シリアル・ペリフェラル・インターフェイス (SPI)
        2. 7.3.3.2 ハードウェア インターフェイス
      4. 7.3.4  AVDD および GVDD リニア電圧レギュレータ
      5. 7.3.5  チャージ ポンプ
      6. 7.3.6  スルー レート制御
      7. 7.3.7  クロス導通 (デッド タイム)
      8. 7.3.8  伝搬遅延
      9. 7.3.9  ピン配置図
        1. 7.3.9.1 ロジック レベル入力ピン (内部プルダウン)
        2. 7.3.9.2 ロジック レベル入力ピン (内部プルアップ)
        3. 7.3.9.3 オープン ドレイン ピン
        4. 7.3.9.4 プッシュプル ピン
        5. 7.3.9.5 7 レベル入力ピン
      10. 7.3.10 電流センス アンプ出力 (SO)
      11. 7.3.11 アクティブ消磁
        1. 7.3.11.1 自動同期整流モード (ASR モード)
          1. 7.3.11.1.1 転流時の自動同期整流
          2. 7.3.11.1.2 PWM モード時の自動同期整流
        2. 7.3.11.2 自動非同期整流モード (AAR モード)
      12. 7.3.12 サイクル単位の電流制限
        1. 7.3.12.1 100% デューティ サイクル入力でのサイクル単位の電流制限
      13. 7.3.13 ホール コンパレータ (アナログ ホール入力)
      14. 7.3.14 進角
      15. 7.3.15 FGOUT 信号
      16. 7.3.16 保護
        1. 7.3.16.1 VM 電源低電圧誤動作防止 (RESET)
        2. 7.3.16.2 AVDD 低電圧保護 (AVDD_UV)
        3. 7.3.16.3 GVDD 低電圧誤動作防止 (GVDD_UV)
        4. 7.3.16.4 VCP チャージ ポンプ低電圧誤動作防止 (CPUV)
        5. 7.3.16.5 過電圧保護 (OV)
        6. 7.3.16.6 過電流保護 (OCP)
          1. 7.3.16.6.1 OCP ラッチ シャットダウン (OCP_MODE = 00b)
          2. 7.3.16.6.2 OCP 自動リトライ (OCP_MODE = 01b)
          3. 7.3.16.6.3 OCP 通知のみ (OCP_MODE = 10b)
          4. 7.3.16.6.4 OCP 無効 (OCP_MODE = 11b)
        7. 7.3.16.7 モーター ロック (MTR_LOCK)
          1. 7.3.16.7.1 MTR_LOCK ラッチ シャットダウン (MTR_LOCK_MODE = 00b)
          2. 7.3.16.7.2 MTR_LOCK 自動リトライ (MTR_LOCK_MODE = 01b)
          3. 7.3.16.7.3 MTR_LOCK 通知のみ (MTR_LOCK_MODE= 10b)
          4. 7.3.16.7.4 MTR_LOCK 無効 (MTR_LOCK_MODE = 11b)
        8. 7.3.16.8 過熱警告 (OTW)
        9. 7.3.16.9 サーマル シャットダウン (OTS)
    4. 7.4 デバイスの機能モード
      1. 7.4.1 機能モード
        1. 7.4.1.1 スリープ モード
        2. 7.4.1.2 動作モード
        3. 7.4.1.3 フォルト リセット (CLR_FLT または nSLEEP リセット パルス)
      2. 7.4.2 DRVOFF 機能
    5. 7.5 SPI 通信
      1. 7.5.1 プログラミング
        1. 7.5.1.1 SPI フォーマット
  9. レジスタ マップ
    1. 8.1 ステータス レジスタ
    2. 8.2 制御レジスタ
  10. アプリケーションと実装
    1. 9.1 アプリケーション情報
    2. 9.2 ホール センサの構成と接続
      1. 9.2.1 代表的な構成
      2. 9.2.2 オープン ドレイン構成
      3. 9.2.3 直列構成
      4. 9.2.4 並列構成
    3. 9.3 電源に関する推奨事項
      1. 9.3.1 バルク コンデンサ
    4. 9.4 レイアウト
      1. 9.4.1 レイアウトのガイドライン
      2. 9.4.2 レイアウト例
      3. 9.4.3 熱に関する注意事項
        1. 9.4.3.1 電力散逸
  11. 10デバイスおよびドキュメントのサポート
    1. 10.1 ドキュメントのサポート
    2. 10.2 サポート・リソース
    3. 10.3 商標
    4. 10.4 静電気放電に関する注意事項
    5. 10.5 用語集
  12. 11改訂履歴
  13. 12メカニカル、パッケージ、および注文情報

レイアウトのガイドライン

バルク キャパシタは、モーター ドライバ デバイスを通る大電流パスの距離ができるだけ短くなるように配置する必要があります。接続用の金属パターンはできる限り幅を広くし、PCB 層を接続する際には多数のビアを使用します。これらの手法により、インダクタンスが最小限に抑えられ、バルク コンデンサが大電流を供給できるようになります。

チャージ ポンプ、GVDD、AVDD コンデンサなどの値の小さいコンデンサはセラミックであり、デバイス ピンに近づけて配置されます。

大電流デバイス出力には、幅の広い金属パターンを使用します。

大きい過渡電流から小電流信号パスへのノイズ結合および EMI 干渉を低減するために、PGND と AGND のグランドは分割します。寄生効果を低減し、デバイスの消費電力を改善するために、電力段以外のすべての回路 (サーマル パッドを含む) を AGND に接続することを推奨します。電圧オフセットを低減させ、ゲート ドライバの性能を維持するため、各グランドは必ずネット タイまたは幅広の抵抗を使って接続します。

本デバイスのサーマル パッドは、PCB の最上層のグランド プレーンに半田付けします。複数のビアを使用して最下層の大きなグランド プレーンに接続します。大きい金属プレーンおよび複数のビアを使うと、本デバイス内で発生する I2 × RDS(on) の熱を放散するのに役立ちます。

放熱性を高めるため、サーマル パッド グランドに接続されたグランド領域を、PCB の全層にわたって最大化します。厚い銅のベタ パターンを使うと、接合部から外気への熱抵抗が下がり、ダイ表面からの放熱性が改善されます。