KOKY056 December   2024 AMC0106M05 , AMC0106M25 , AMC0136 , AMC0311D , AMC0311S , AMC0386 , AMC0386-Q1 , AMC1100 , AMC1106M05 , AMC1200 , AMC1200-Q1 , AMC1202 , AMC1203 , AMC1204 , AMC1211-Q1 , AMC1300 , AMC1300B-Q1 , AMC1301 , AMC1301-Q1 , AMC1302-Q1 , AMC1303M2510 , AMC1304L25 , AMC1304M25 , AMC1305M25 , AMC1305M25-Q1 , AMC1306M05 , AMC1306M25 , AMC1311 , AMC1311-Q1 , AMC131M03 , AMC1336 , AMC1336-Q1 , AMC1350 , AMC1350-Q1 , AMC23C12 , AMC3301 , AMC3330 , AMC3330-Q1

 

  1.   1
  2.   머리말
  3.   절연 신호 체인 소개
    1.     절연 증폭기와 절연 모듈레이터 비교
      1.      요약
      2.      절연 증폭기 소개
      3.      절연 모듈레이터 소개
      4.      절연 증폭기와 절연 모듈레이터 간의 성능 비교
      5.      트랙션 인버터의 절연 모듈레이터
      6.      절연 증폭기 및 모듈레이터 권장 사항
      7.      결론
    2.     매우 넓은 연면 및 간극을 지원하는 TI의 첫 번째 절연 증폭기
      1.      애플리케이션 요약
  4.   선택 트리
  5.   전류 감지
    1.     절연 데이터 컨버터를 위한 션트 레지스터 선택
      1.      17
    2.     절연 전류 감지에 대한 설계 고려 사항
      1.      19
      2.      결론
      3.      참고 자료
      4.      관련 웹사이트
    3.     ±50mV 입력 및 단일 종단 출력을 지원하는 절연 전류 감지 회로
      1.      24
    4.     ±50mV 입력 및 차동 출력을 지원하는 절연 전류 감지 회로
      1.      26
    5.     ±250mV 입력 범위 및 단일 종단 출력 전압을 지원하는 절연 전류 감지 회로
      1.      설계 목표
      2.      설계 설명
      3.      설계 노트
      4.      설계 단계
      5.      설계 시뮬레이션
      6.      DC 시뮬레이션 결과
      7.      폐쇄형 루프 AC 시뮬레이션 결과
      8.      과도 시뮬레이션 결과
      9.      설계 레퍼런스
      10.      주요 절연 증폭기 설계
      11.      대체 절연 증폭기 설계
    6.     ±250mV 입력 및 차동 출력을 지원하는 절연 전류 측정 회로
      1.      설계 목표
      2.      설계 설명
      3.      설계 노트
      4.      설계 단계
      5.      설계 시뮬레이션
      6.      DC 시뮬레이션 결과
      7.      폐쇄형 루프 AC 시뮬레이션 결과
      8.      과도 시뮬레이션 결과
      9.      설계 레퍼런스
      10.      주요 연산 증폭기 설계
      11.      대체 연산 증폭기 설계
    7.     절연 과전류 보호 회로
      1.      52
    8.     단일 종단 입력 ADC에 차동 출력(절연) 증폭기 인터페이싱
      1.      54
    9.     AMC3311을 활용하여 절연 감지 및 고장 감지를 위해 AMC23C11에 전원 공급
      1.      애플리케이션 요약
    10.     프론트 엔드 게인 단계를 지원하는 절연 전류 감지 회로
      1.      58
    11.     절연 션트 및 폐쇄형 루프 전류 감지의 정확도 비교
      1.      60
  6.   전압 감지
    1.     절연 전압 감지를 통해 전력 변환 및 모터 제어 효율 극대화
      1.      63
      2.      고전압 감지용 솔루션
      3.      집적 레지스터 장치
      4.      단일 종단 출력 장치
      5.      통합 절연 전압 감지 사용 사례
      6.      결론
      7.      추가 리소스
    2.     통합 고전압 저항 절연 증폭기 및 모듈레이터로 정확도와 성능 향상
      1.      요약
      2.      머리말
      3.      고전압 저항 절연 증폭기 및 모듈레이터의 장점
        1.       공간 절약
        2.       통합 HV 저항의 온도 및 수명 드리프트 개선
        3.       정확도 결과
        4.       완전 통합 저항기와 추가 외부 저항기의 비교 예시
        5.       장치 선택 트리 및 일반적인 AC/DC 사용 사례
      4.      요약
      5.      참고 자료
    3.     전압 감지 애플리케이션을 위한 차동, 단일 종단 고정 게인 및 비율 측정 출력을 지원하는 절연 증폭기
      1.      요약
      2.      머리말
      3.      차동, 단일 종단 고정 게인 및 비율 측정 출력 개요
        1.       차동 출력을 지원하는 절연 증폭기
        2.       단일 종단, 고정 게인 출력을 지원하는 절연 증폭기
        3.       단일 종단, 비율 측정 출력을 지원하는 절연 증폭기
      4.      애플리케이션 예시
        1.       제품 선택 트리
      5.      요약
      6.      참고 자료
    4.     ±250mV 입력 및 차동 출력을 사용하는 절연 전압 측정 회로
      1.      93
    5.     AMC3330을 사용한 라인 간 절연 전압 측정을 위한 분할 탭 연결
      1.      95
    6.     절연 증폭기와 의사 차동 입력 SAR ADC를 지원하는 ±12V 전압 감지 회로
      1.      97
    7.     절연 증폭기와 차동 입력 SAR ADC를 지원하는 ±12V 전압 감지 회로
      1.      99
    8.     절연 부족 전압 및 과전압 감지 회로
      1.      101
    9.     절연 제로 크로스 감지 회로
      1.      103
    10.     차동 출력을 지원하는 ±480V 절연 전압 감지 회로
      1.      105
  7.   EMI 성능
    1.     절연 증폭기를 사용한 동급 최고의 방사 방출 EMI 성능
      1.      절연 증폭기를 사용한 동급 최고의 방사 방출 EMI 성능
      2.      머리말
      3.      텍사스 인스트루먼트 절연 증폭기 현재 세대의 방사 방출 성능
      4.      텍사스 인스트루먼트 절연 증폭기 이전 세대의 방사 방출 성능
      5.      결론
      6.      참고 자료
    2.     AMC3301 제품군 방사 방출 EMI를 감쇠하기 위한 모범 사례
      1.      요약
      2.      머리말
      3.      입력 연결이 AMC3301 제품군 방사 방출에 미치는 영향
      4.      AMC3301 제품군 방사 방출 감쇠
        1.       페라이트 비드 및 공통 모드 초크
        2.       AMC3301 제품군의 PCB 회로도 및 레이아웃 모범 사례
      5.      여러 AMC3301 장치 사용
        1.       장치 방향
        2.       여러 AMC3301에 대한 PCB 레이아웃 모범 사례
      6.      결론
      7.      AMC3301 제품군 표
  8.   완제품
    1.     HEV/EV의 션트 및 홀 기반 절연 전류 감지 솔루션 비교
      1.      128
    2.     DC 전기차 충전 애플리케이션의 전류 감지를 위한 설계 고려 사항
      1.      요약
      2.      머리말
        1.       전기 자동차용 DC 충전소
        2.       전류 감지 기술 선택 및 동급 모델
          1.        션트 기반 솔루션으로 전류 감지
          2.        감지 기술의 동급 모델
      3.      AC/DC 컨버터의 전류 감지
        1.       AC/DC의 기본 하드웨어 및 제어 설명
          1.        AC 전류 제어 루프
          2.        DC 전압 제어 루프
        2.       지점 A 및 B – AC/DC AC 위상 전류 감지
          1.        대역폭의 영향
            1.         정상 상태 분석: 기본 및 제로 크로싱 전류
            2.         과도 현상 분석: 스텝 전력 및 전압 저하 응답
          2.        지연의 영향
            1.         고장 분석: 그리드 단락
          3.        게인 오류의 영향
            1.         게인 오류로 인한 AC/DC의 전력 장애
            2.         게인 오류로 인한 전력 장애에 대한 AC/DC 응답
          4.        오프셋의 영향
        3.       지점 C 및 D – AC/DC 링크 전류 감지
          1.        대역폭이 피드포워드 성능에 미치는 영향
          2.        지연이 전원 스위치 보호에 미치는 영향
          3.        게인 오류가 전력 측정에 미치는 영향
            1.         과도 현상 분석: 지점 D의 피드포워드
          4.        오프셋의 영향
        4.       지점 A, B, C1/2 및 D1/2및 제품 제안의 장점과 단점 요약
      4.      DC/DC 컨버터의 전류 감지
        1.       위상 변이 제어를 사용하는 절연 DC/DC 컨버터의 기본 작동 원리
        2.       지점 E, F-DC/DC 전류 감지
          1.        대역폭의 영향
          2.        게인 오류의 영향
          3.        오프셋 오류의 영향
        3.       지점 G - DC/DC 탱크 전류 감지
        4.       감지 지점 E, F, G 및 제품 제안 요약
      5.      결론
      6.      참고 자료
    3.     전기 모터 드라이브의 오류 감지를 위해 절연 콤퍼레이터 사용
      1.      머리말
      2.      전기 모터 드라이브 소개
      3.      전기 모터 드라이브의 고장 이벤트 이해
      4.      전기 모터 드라이브에서 안정적인 감지 및 보호 달성
      5.      활용 사례 1: 양방향 위상 내 과전류 감지
      6.      활용 사례 2: DC+ 과전류 감지
      7.      활용 사례 3: DC – 과전류 또는 단락 감지
      8.      활용 사례 4: DC 링크(DC+에서 DC–) 과전압 및 부족 전압 감지
      9.      활용 사례 5: IGBT 모듈 과열 감지
    4.     모터 드라이브의 옵토 호환 절연 게이트 드라이버 UCC23513용 개별 DESAT
      1.      요약
      2.      머리말
      3.      DESAT가 통합된 절연 게이트 드라이버의 시스템 과제
      4.      UCC23513 및 AMC23C11을 통한 시스템 접근 방식
        1.       시스템 개요 및 주요 사양
        2.       회로도 설계
          1.        회로도
          2.        VCE(DESAT) 임계값과 DESAT 바이어스 전류 구성
          3.        DESAT블랭킹 시간
          4.        DESAT 디글리치 필터
        3.       레퍼런스 PCB 레이아웃
      5.      시뮬레이션 및 테스트 결과
        1.       시뮬레이션 회로 및 결과
          1.        시뮬레이션 회로
          2.        시뮬레이션 결과
        2.       3상 IGBT 인버터를 사용한 테스트 결과
          1.        브레이크 IGBT 테스트
          2.        위상 간 단락이 발생한 3상 인버터에 대한 테스트 결과
      6.      요약
      7.      참고 자료
    5.     AC 모터 드라이브의 절연 전압 감지
      1.      머리말
      2.      결론
      3.      참고 자료
    6.     서버 PSU에서 고성능 절연 전류 및 전압 감지 달성
      1.      애플리케이션 요약
  9.   추가 레퍼런스 디자인/회로
    1.     절연 증폭기를 위한 부트스트랩 충전 펌프 전원 공급 장치 설계
      1.      요약
      2.      머리말
      3.      부트스트랩 전원 공급 장치 설계
        1.       충전 펌프 커패시터 선택
        2.       TINA-TI에서 시뮬레이션
        3.       AMC1311-Q1을 사용한 하드웨어 테스트
      4.      요약
      5.      참조
    2.     MCU로의 절연 모듈레이터 디지털 인터페이스를 사용한 클록 에지 지연 보상
      1.      요약
      2.      머리말
      3.      디지털 인터페이스 타이밍 사양의 설계 과제
      4.      클록 에지 지연 보상을 사용한 디자인 접근 방식
        1.       소프트웨어 구성 가능 위상 지연을 사용한 클록 신호 보상
        2.       하드웨어 구성 가능 위상 지연을 사용한 클록 신호 보상
        3.       클록 반환을 통한 클록 신호 보상
        4.       MCU에서 클록 반전에 의한 클록 신호 보상
      5.      테스트 및 검증
        1.       테스트 장비 및 소프트웨어
        2.       소프트웨어 구성 가능 위상 지연을 사용한 클록 신호 보상 테스트
          1.        테스트 설정
          2.        테스트 측정 결과
        3.       MCU에서 클록 반전에 의한 클록 신호 보상 테스트
          1.        테스트 설정
          2.        테스트 측정 결과
            1.         테스트 결과 – GPIO123에서 클럭 입력의 클럭 반전 없음
            2.         테스트 결과 – GPIO123에서 클록 입력의 클록 반전
        4.       계산 툴을 사용한 디지털 인터페이스 타이밍 검증
          1.        보상 방법 없는 디지털 인터페이스
          2.        일반적으로 사용되는 방법 - 클록 주파수 줄이기
          3.        소프트웨어 구성 가능 위상 지연을 사용한 클록 에지 보상
      6.      결론
      7.      참고 자료
    3.     AMC3311을 활용하여 절연 감지 및 고장 감지를 위해 AMC23C11에 전원 공급
      1.      애플리케이션 요약
게인 오류로 인한 전력 장애에 대한 AC/DC 응답

그림 89에서는 일반 전압 컨트롤러 및 발전소의 등가 모델을 보여줍니다.

 발전소 모델을 사용한 간소화된 DC 버스 전압 제어 루프그림 89 발전소 모델을 사용한 간소화된 DC 버스 전압 제어 루프

그림 89에 나와 있듯이, 이전에 분석적으로 도출된 용어(방정식 47)는 루프에 전압 제어 성능을 점검하기 위한 장애로 도입되었습니다. 제어 루프 토폴로지를 관찰하면 PI 컨트롤러의 통합적인 부분이 있기 때문에 DC 장애 방정식 47로 인한 정상 상태 오류가 완전히 거부된다는 것을 알 수 있습니다. 반대로 장애의 AC 부품은 완전히 거부될 수 없으므로 전압 리플이 발생합니다.

AC 측에 사용된 전류 센서의 최대 허용 가능한 게인 오류를 평가하기 위해 다음 가설을 적용하여 시뮬레이션을 실행했습니다.

  • 리플 전압 극대화를 위해 최소 정격 전압에서 작동하는 DC 버스 전압(650V)
  • AC와 DC 측 사이의 최대 전력 교환으로 전력 장애 증가(11kW)
  • 다음과 같이 최악의 시나리오에 도달하기 위해 적용된 3개의 위상에 대한 게인 오류:
    ε1 = –ε2 = –ε3;
  • 모든 시뮬레이션에서 전류 제어 루프 대역폭이 일정하게 유지(3kHz)
  • AC 필터는 프라임 전류 센싱을 사용할 때 공칭 출력 전력에서 THD를 3% 미만으로 유지하도록 설계되었습니다.
  • 전력선 주파수는 50Hz입니다.

그림 90에서는 다른 게인 오류가 있는 센서와 작동하는 AC/DC 컨버터의 시뮬레이션 결과를 보여줍니다.

 DC 링크 대역폭과 게인 오류를 매개 변수로 하여 시간에 따른 DC 링크 전압 리플그림 90 DC 링크 대역폭과 게인 오류를 매개 변수로 하여 시간에 따른 DC 링크 전압 리플

다음 결과는 그림 90에서 제공합니다.

  1. DC 링크의 100Hz 리플 전압. 이는 전류 센싱 단계의 게인 오류에 의해 주입된 전력 리플에 의해 발생합니다.
  2. 이론에 의해 확인된 바와 같이 PI 컨트롤러의 통합 부품 덕분에 모든 경우의 전압 평균값은 정상 상태에 도달했을 때 여전히 동일합니다.
  3. DC 링크 전압 리플은 DC 링크 전압 제어 루프의 대역폭과 상관됩니다. 전압 제어 루프의 대역폭이 충분히 높은 경우 컨트롤러는 그리드 THD를 희생하여 매우 빠른 전류 루프를 제어함으로써 리플 전압을 제거하려고 합니다.

이 예에서는 전압 제어 루프의 400Hz 대역폭과 전류 센서의 3.7%의 게인 오류가 쌍을 이루어, 게인 오류 없는 이상적인 전류 센서를 갖춘 3% THD와 3.3%의 THD를 생성합니다. 또는 전압 제어 루프의 저대역폭은 그리드 측에서 THD가 낮지만 DC 링크의 리플 전압은 허용 불가능한 수준으로 증가할 수 있습니다. DC 링크에 전압 리플이 있으면 배터리의 전력 리플이 발생할 수 있으며 이를 용인할 수 없습니다. 또한 저전압 제어 루프 대역폭은 낮은 부하 단계 응답으로 이어집니다.

결론적으로, 게인 오류가 3.7%인 스위칭 노드에 위치한 전류 센서는 그리드 전류 THD가 10% 이상 증가할 수 있습니다. 이러한 증가를 보상하기 위해 입력 필터의 볼륨은 4% 이상 성장하여 컨버터의 그리드 측에서 3% 미만의 THD 설계 목표를 달성해야 합니다.