DLPU140A May   2024  – September 2025 DLP160AP , DLP160CP , DLP2000 , DLP2010 , DLP2010LC , DLP2010NIR , DLP2021-Q1 , DLP230GP , DLP230KP , DLP230NP , DLP300S , DLP3010 , DLP3010LC , DLP301S , DLP3020-Q1 , DLP3021-Q1 , DLP3030-Q1 , DLP3034-Q1 , DLP3310 , DLP4500 , DLP4500NIR , DLP4620S-Q1 , DLP4621-Q1 , DLP470NE , DLP470TE , DLP4710 , DLP4710LC , DLP471NE , DLP471TE , DLP471TP , DLP480RE , DLP500YX , DLP5500 , DLP550HE , DLP550JE , DLP5530-Q1 , DLP5530S-Q1 , DLP5531-Q1 , DLP5531A-Q1 , DLP5532-Q1 , DLP5533A-Q1 , DLP5534-Q1 , DLP6500FLQ , DLP6500FYE , DLP650LE , DLP650LNIR , DLP650NE , DLP650TE , DLP651LE , DLP651NE , DLP660TE , DLP670RE , DLP670S , DLP7000 , DLP7000UV , DLP780NE , DLP780TE , DLP781NE , DLP781TE , DLP800RE , DLP801RE , DLP801XE , DLP9000 , DLP9000X , DLP9000XUV , DLP9500 , DLP9500UV

 

  1.   1
  2.   Abstract
  3. 1DMD Diffraction Efficiency Calculator Functionality
  4. 2Installation and setup
  5. 3Input Parameters
    1. 3.1  Pixel Models (DMD Micromirror)
    2. 3.2  Parameter Sweeps
    3. 3.3  Wavelength
    4. 3.4  Illumination Angle of Incidence
    5. 3.5  Tilt Angle
    6. 3.6  ƒ/Number (Illumination and Projection)
    7. 3.7  Enhance Slider
    8. 3.8  Diffraction Energy Plot
    9. 3.9  Array Size
    10. 3.10 Output File Name
    11. 3.11 Average Diffraction Efficiency and Photopic Diffraction Efficiency
    12. 3.12 Apodization
    13. 3.13 Run Simulation
  6. 4Coordinate System
  7. 5Examples
    1. 5.1 High F/Number Illumination
    2. 5.2 Mismatched Illumination and Projection F/Number
    3. 5.3 Cantilever Versus Torsional With Same Pixel Pitch
    4. 5.4 Side Diamond Diffraction Pattern
    5. 5.5 Apodization
  8.   Trademarks
  9. 6References
  10. 7Revision History

Array Size

For applications with low ƒ/#s, the standard resolution for the solving array of 200 x 200 cells provides accurate models. However, moving to higher ƒ/# applications can require more resolution. From the table below, we can see that the accuracy improves as the resolution increases and tends to level out considerably with a 1600 x 1600 array size.

Table 3-3 Array Size Across Different f/#s With the Resulting Efficiency Values
Resolution Array Size Diffraction Efficiency WL (400-700nm) @ ƒ/2.4 Diffraction Efficiency WL (400-700nm) @ ƒ/16 Diffraction Efficiency WL (400-700nm) @ ƒ/32
200 x 200 0.7755 0.2265 0.1049
400 x 400 0.7764 0.2121 0.0890
800 x 800 0.7768 0.2137 0.0914
1600 x 1600 0.7767 0.2155 0.0928
3200 x 3200 0.7769 0.2150 0.0923
6400 x 6400 0.7768 0.2150 0.0932

As array size increases the accuracy and variation improve. Larger array sizes can cause substantially longer modeling times with the tradeoff of higher accuracy simulations. Tests can be run to verify that the accuracy is good for the given application. The resolution array size can be changed by inputting the desired value into the Array Size input field.