SCPS286 July   2025 TPLD2001

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Supply Current Characteristics
    7. 5.7 Switching Characteristics
    8. 5.8 I2C Bus Timing Requirements
    9. 5.9 SPI Timing Requirements
  7. Parameter Measurement Information
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  I/O Pins
        1. 7.3.1.1 Input Modes
        2. 7.3.1.2 Output Modes
        3. 7.3.1.3 Pull-Up or Pull-Down Resistors
      2. 7.3.2  Connection Mux
      3. 7.3.3  Configurable Use Logic Blocks
        1. 7.3.3.1 2-Bit LUT or D Flip-Flop/Latch macro-cell
          1. 7.3.3.1.1 2-Bit LUT
          2. 7.3.3.1.2 D Flip-Flop/Latch
        2. 7.3.3.2 2-Bit LUT or Pattern Generator macro-cell
          1. 7.3.3.2.1 2-Bit LUT
          2. 7.3.3.2.2 Pattern Generator
        3. 7.3.3.3 3-Bit LUT or D Flip-Flop/Latch with Reset/Set macro-cell
          1. 7.3.3.3.1 3-Bit LUT
          2. 7.3.3.3.2 D Flip-Flop/Latch with Reset/Set
        4. 7.3.3.4 3-Bit LUT or D Flip-Flop/Latch or Shift Register macro-cell
          1. 7.3.3.4.1 3-Bit LUT
          2. 7.3.3.4.2 D Flip-Flop/Latch with Reset/Set
          3. 7.3.3.4.3 8-Bit Shift Register
        5. 7.3.3.5 4-Bit LUT or D Flip-Flop/Latch with Reset/Set macro-cell
          1. 7.3.3.5.1 4-Bit LUT
          2. 7.3.3.5.2 D Flip-Flop/Latch with Reset/Set
      4. 7.3.4  Configurable Logic and Timing blocks
        1. 7.3.4.1 3-Bit LUT
        2. 7.3.4.2 D Flip-Flop/Latch with Reset/Set
        3. 7.3.4.3 Counters/Delay Generators (CNT/DLY)
          1. 7.3.4.3.1 Delay Mode
          2. 7.3.4.3.2 Reset Counter Mode
          3. 7.3.4.3.3 One-Shot Mode
          4. 7.3.4.3.4 Frequency Comparator Mode
          5. 7.3.4.3.5 Edge Detector Mode
          6. 7.3.4.3.6 Delayed Edge Detector Mode
        4. 7.3.4.4 LUT/DFF + CNT modes
      5. 7.3.5  Programmable Deglitch Filter or Edge Detector
      6. 7.3.6  Deglitch Filter or Edge Detector
      7. 7.3.7  State Machine (SM)
        1. 7.3.7.1 State Machine Inputs
        2. 7.3.7.2 State Machine Outputs
        3. 7.3.7.3 Configuring the State Machine
        4. 7.3.7.4 State Machine Timing Considerations
      8. 7.3.8  8-Bit Counters/Delay Generators/Finite State Machines
      9. 7.3.9  PWM Generators
      10. 7.3.10 Watchdog Timer
      11. 7.3.11 Analog Comparators
        1. 7.3.11.1 Discrete Analog Comparator (ACMP)
        2. 7.3.11.2 Multi-channel Analog Comparator (McACMP)
      12. 7.3.12 Voltage Reference (VREF)
      13. 7.3.13 Analog Temperature Sensor (TS)
      14. 7.3.14 Analog Multiplexer (AMUX)
      15. 7.3.15 Oscillators
        1. 7.3.15.1 2kHz Fixed Frequency Oscillator
        2. 7.3.15.2 2MHz Fixed Frequency Oscillator
        3. 7.3.15.3 25MHz Fixed Frequency Oscillator
        4. 7.3.15.4 Oscillator Power Modes
      16. 7.3.16 Serial Communications
        1. 7.3.16.1 I2C Mode
        2. 7.3.16.2 SPI Mode
        3. 7.3.16.3 Virtual I/Os
    4. 7.4 Device Functional Modes
      1. 7.4.1 Power-On Reset
      2. 7.4.2 Power Supply Control Modes
      3. 7.4.3 Protection Features
        1. 7.4.3.1 Device Read/Write Lock
        2. 7.4.3.2 OTP Cyclic Redundancy Check (CRC)
      4. 7.4.4 Programming
        1. 7.4.4.1 Selectable I2C/SPI Interface
        2. 7.4.4.2 One-Time Programmable Memory (OTP)
        3. 7.4.4.3 Intel HEX File Format
        4. 7.4.4.4 TPLD2001 Registers
          1. 7.4.4.4.1 TPLD2001_User Registers
          2. 7.4.4.4.2 TPLD2001_Cfg_0 Registers
          3. 7.4.4.4.3 TPLD2001_Cfg_1 Registers
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
        1. 8.2.1.1 Power Considerations
        2. 8.2.1.2 Input Considerations
        3. 8.2.1.3 Output Considerations
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Tape and Reel Information
    2. 11.2 Mechanical Data

8-Bit Counters/Delay Generators/Finite State Machines

The TPLD2001 has four 8-bit counters that can operate as a finite state machine (FSM) while in Reset counter mode in addition to the modes outlined in Section 7.3.4.3. These 8-bit counter macro-cells have 4 inputs from the connection mux: counter input, FSM up/down, FSM keep, and external clock input; and 1 output into the connection mux: counter out. There is also an 8-bit parallel output of the current count value from this macro-cell that routes directly into the pulse-width modulation (PWM) generator macro-cells.

TPLD2001 CNT/DLY/FSM block diagram Figure 7-35 CNT/DLY/FSM block diagram
The following can be configured for an operating FSM: counter reset data and clock.

  • Counter reset data: The value which the counter will load when a reset condition is met and can be set to any value between 1 and 255. The counter data can be updated in-system using the User Registers. It is recommended to put the counter in a reset state when updating the counter data registers to ensure glitch-free loading of the data.

  • Edge select, the edge in which to asynchronously reset the counter to the inital counter data: Both, Rise, Fall, or High-level reset.

  • Clock input: OSC0, a divided clock derived from OSC0 (/8, /64, /512, /4096, /32768, /262144), OSC1, a divided clock derived from OSC1 (/8, /64, /512), OSC2, a divided clock derived from OSC2 (/4), or an external clock.

Note:

For unused counter macro-cells, set the clock selection (CLK_SEL) to External CLK from CMX to reduce excess current draw.

The FSM UP input determines the direction of the counter/FSM, whether the count will decrement or increment with respect to the rising edge of the clock input. While FSM UP = Low, the counter will decrement (count downward) and reset to the inital counter data once 0 is reached; and while FSM UP = High, the counter will increment (count upward) and reset to the initial counter data once 255 is reached.

The FSM KEEP input will pause, or latch, the current count and ignore any FSM UP or clock input. The count reset input will still reset the counter, but will neither decrement nor increment. While FSM KEEP = Low, the counter will count as configured; and while FSM KEEP = High, the counter will pause.

After a trigger of UP or KEEP, an additional 2 clock cycles is added for clock synchronization with an option to bypass. Note, bypassing the clock synchronization may result in the counter resetting to an unknown value.

TPLD2001 CNT/FSM timing example (DATA = 3)Figure 7-36 CNT/FSM timing example (DATA = 3)
TPLD2001 CNT/FSM with UP/KEEP timing example (DATA = 3)Figure 7-37 CNT/FSM with UP/KEEP timing example (DATA = 3)