SLVSH22A May   2024  – September 2025 DRV8000-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings Auto
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information RGZ package
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 External Components
    4. 7.4 Feature Description
      1. 7.4.1 Heater MOSFET Driver
        1. 7.4.1.1 Heater MOSFET Driver Control
        2. 7.4.1.2 Heater MOSFET Driver Protection
          1. 7.4.1.2.1 Heater SH_HS Internal Diode
          2. 7.4.1.2.2 Heater MOSFET VDS Overcurrent Protection (HEAT_VDS)
          3. 7.4.1.2.3 Heater MOSFET Open Load Detection
      2. 7.4.2 High-Side Drivers
        1. 7.4.2.1 High-side Driver Control
          1. 7.4.2.1.1 High-side Driver PWM Generator
          2. 7.4.2.1.2 Constant Current Mode
          3. 7.4.2.1.3 OUTx HS ITRIP Behavior
          4. 7.4.2.1.4 High-side Drivers - Parallel Outputs
        2. 7.4.2.2 High-side Driver Protection Circuits
          1. 7.4.2.2.1 High-side Drivers Internal Diode
          2. 7.4.2.2.2 High-side Driver Short-circuit Protection
          3. 7.4.2.2.3 High-side Driver Overcurrent Protection
          4. 7.4.2.2.4 High-side Driver Open Load Detection
      3. 7.4.3 Electrochromic Glass Driver
        1. 7.4.3.1 Electrochromic Driver Control
        2. 7.4.3.2 Electrochromic Driver Protection
      4. 7.4.4 Half-bridge Drivers
        1. 7.4.4.1 Half-bridge Control
        2. 7.4.4.2 OUT1 and OUT2 High-side Driver Mode
        3. 7.4.4.3 Half-bridge Register Control
        4. 7.4.4.4 Half-Bridge ITRIP Regulation
        5. 7.4.4.5 Half-bridge Protection and Diagnostics
          1. 7.4.4.5.1 Half-Bridge Off-State Diagnostics (OLP)
          2. 7.4.4.5.2 Half-bridge Open Load Detection
          3. 7.4.4.5.3 Half-Bridge Overcurrent Protection
      5. 7.4.5 Gate Drivers
        1. 7.4.5.1 Input PWM Modes
          1. 7.4.5.1.1 Half-Bridge Control
          2. 7.4.5.1.2 H-Bridge Control
          3. 7.4.5.1.3 DRVOFF - Gate Driver Shutoff Pin
        2. 7.4.5.2 Smart Gate Driver - Functional Block Diagram
          1. 7.4.5.2.1  Smart Gate Driver
          2. 7.4.5.2.2  Functional Block Diagram
          3. 7.4.5.2.3  Slew Rate Control (IDRIVE)
          4. 7.4.5.2.4  Gate Driver State Machine (TDRIVE)
            1. 7.4.5.2.4.1 tDRIVE Calculation Example
          5. 7.4.5.2.5  Propagation Delay Reduction (PDR)
          6. 7.4.5.2.6  PDR Pre-Charge/Pre-Discharge Control Loop Operation Details
          7. 7.4.5.2.7  PDR Post-Charge/Post-Discharge Control Loop Operation Details
            1. 7.4.5.2.7.1 PDR Post-Charge/Post-Discharge Setup
          8. 7.4.5.2.8  Detecting Drive and Freewheel MOSFET
          9. 7.4.5.2.9  Automatic Duty Cycle Compensation (DCC)
          10. 7.4.5.2.10 Closed Loop Slew Time Control (STC)
            1. 7.4.5.2.10.1 STC Control Loop Setup
        3. 7.4.5.3 Tripler (Double-Stage) Charge Pump
        4. 7.4.5.4 Wide Common Mode Differential Current Shunt Amplifier
        5. 7.4.5.5 Gate Driver Protection Circuits
          1. 7.4.5.5.1 MOSFET VDS Overcurrent Protection (VDS_OCP)
          2. 7.4.5.5.2 Gate Driver Fault (VGS_GDF)
          3. 7.4.5.5.3 Offline Short-circuit and Open Load Detection (OOL and OSC)
      6. 7.4.6 Sense Output (IPROPI)
      7. 7.4.7 Protection Circuits
        1. 7.4.7.1 Fault Reset (CLR_FLT)
        2. 7.4.7.2 DVDD Logic Supply Power on Reset (DVDD_POR)
        3. 7.4.7.3 PVDD Supply Undervoltage Monitor (PVDD_UV)
        4. 7.4.7.4 PVDD Supply Overvoltage Monitor (PVDD_OV)
        5. 7.4.7.5 VCP Charge Pump Undervoltage Lockout (VCP_UV)
        6. 7.4.7.6 Thermal Clusters
        7. 7.4.7.7 Watchdog Timer
        8. 7.4.7.8 Fault Detection and Response Summary Table
    5. 7.5 Programming
      1. 7.5.1 Serial Peripheral Interface (SPI)
      2. 7.5.2 SPI Format
      3. 7.5.3 Timing Diagrams
  9. DRV8000-Q1 Register Map
    1. 8.1 DRV8000-Q1_STATUS Registers
    2. 8.2 DRV8000-Q1_CNFG Registers
    3. 8.3 DRV8000-Q1_CTRL Registers
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 IDRIVE Calculation Example
        2. 9.2.2.2 tDRIVE Calculation Example
        3. 9.2.2.3 Maximum PWM Switching Frequency
        4. 9.2.2.4 Current Shunt Amplifier Configuration
    3. 9.3 Initialization Setup
    4. 9.4 Power Supply Recommendations
      1. 9.4.1 Bulk Capacitance Sizing
    5. 9.5 Layout
      1. 9.5.1 Layout Guidelines
      2. 9.5.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Receiving Notification of Documentation Updates
    2. 10.2 Support Resources
    3. 10.3 Trademarks
    4. 10.4 Electrostatic Discharge Caution
    5. 10.5 Glossary
  12. 11Pre-Production Revision History
  13. 12Mechanical, Packaging, and Orderable Information
    1. 12.1 Package Option Addendum
    2. 12.2 Tape and Reel Information

Current Shunt Amplifier Configuration

The DRV800x-Q1 differential shunt amplifier gain and shunt resistor value are selected based on the dynamic current range, reference voltage supply, shunt resistor power rating, and operating temperature range. In bidirectional operation of the shunt amplifier, the dynamic range at the output is approximately calculated as shown in the equation for Bidirectional SO Voltage. The output of the amplifier can swing from the midpoint reference (VDVDD / 2) to either 0.25V or VDVDD - 0.25V depending on the polarity of the input voltage to the amplifier.

Equation 12. VSO_BI = (VDVDD - 0.25V) - (VDVDD / 2)

If only unidirectional current sensing is required, the amplifier reference can be modified to expand the dynamic range at the output. The is modified through the CSA_DIV SPI register setting. In this mode, the dynamic range at the output is approximately calculated as shown in VSO_UNI.

Equation 13. VSO_UNI = (VDVDD - 0.25V) - (VDVDD / 8)

Based on VDVDD = 3.3V, the dynamic out range in both bidirectional or unidirectional sensing can be calculated as shown below:

Equation 14. VSO_BI = (3.3V - 0.25V) - (3.3V / 2) = 1.4V
Equation 15. VSO_UNI = (3.3V - 0.25V) - (3.3V / 8) = 2.6375V

The external shunt resistor value and shunt amplifier gain setting are selected based on the available dynamic output range, the shunt resistor power rating, and maximum motor current that needs to be measured. This exact values for the shunt resistance and amplifier gain are determine by both RSHUNT calculation and Amplifier Gain calculation.

Equation 16. RSHUNT < PSHUNT / IMAX2
Equation 17. AV < VSO / (IMAX x RSHUNT)

Based on VSO = 1.4V, IMAX = 25A and PSHUNT = 3 W, the values for shunt resistance and amplifier gain can be calculated as shown below:

Equation 18. RSHUNT < 3W / 252 A = 4.8mΩ
Equation 19. AV < 1.4V / (25A x 4.8mΩ) = 11.67V/V

Based on the results, a shunt resistance of 4mΩ and an amplifier gain of 10V/V can be selected.