SLVSH22A May   2024  – September 2025 DRV8000-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings Auto
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information RGZ package
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 External Components
    4. 7.4 Feature Description
      1. 7.4.1 Heater MOSFET Driver
        1. 7.4.1.1 Heater MOSFET Driver Control
        2. 7.4.1.2 Heater MOSFET Driver Protection
          1. 7.4.1.2.1 Heater SH_HS Internal Diode
          2. 7.4.1.2.2 Heater MOSFET VDS Overcurrent Protection (HEAT_VDS)
          3. 7.4.1.2.3 Heater MOSFET Open Load Detection
      2. 7.4.2 High-Side Drivers
        1. 7.4.2.1 High-side Driver Control
          1. 7.4.2.1.1 High-side Driver PWM Generator
          2. 7.4.2.1.2 Constant Current Mode
          3. 7.4.2.1.3 OUTx HS ITRIP Behavior
          4. 7.4.2.1.4 High-side Drivers - Parallel Outputs
        2. 7.4.2.2 High-side Driver Protection Circuits
          1. 7.4.2.2.1 High-side Drivers Internal Diode
          2. 7.4.2.2.2 High-side Driver Short-circuit Protection
          3. 7.4.2.2.3 High-side Driver Overcurrent Protection
          4. 7.4.2.2.4 High-side Driver Open Load Detection
      3. 7.4.3 Electrochromic Glass Driver
        1. 7.4.3.1 Electrochromic Driver Control
        2. 7.4.3.2 Electrochromic Driver Protection
      4. 7.4.4 Half-bridge Drivers
        1. 7.4.4.1 Half-bridge Control
        2. 7.4.4.2 OUT1 and OUT2 High-side Driver Mode
        3. 7.4.4.3 Half-bridge Register Control
        4. 7.4.4.4 Half-Bridge ITRIP Regulation
        5. 7.4.4.5 Half-bridge Protection and Diagnostics
          1. 7.4.4.5.1 Half-Bridge Off-State Diagnostics (OLP)
          2. 7.4.4.5.2 Half-bridge Open Load Detection
          3. 7.4.4.5.3 Half-Bridge Overcurrent Protection
      5. 7.4.5 Gate Drivers
        1. 7.4.5.1 Input PWM Modes
          1. 7.4.5.1.1 Half-Bridge Control
          2. 7.4.5.1.2 H-Bridge Control
          3. 7.4.5.1.3 DRVOFF - Gate Driver Shutoff Pin
        2. 7.4.5.2 Smart Gate Driver - Functional Block Diagram
          1. 7.4.5.2.1  Smart Gate Driver
          2. 7.4.5.2.2  Functional Block Diagram
          3. 7.4.5.2.3  Slew Rate Control (IDRIVE)
          4. 7.4.5.2.4  Gate Driver State Machine (TDRIVE)
            1. 7.4.5.2.4.1 tDRIVE Calculation Example
          5. 7.4.5.2.5  Propagation Delay Reduction (PDR)
          6. 7.4.5.2.6  PDR Pre-Charge/Pre-Discharge Control Loop Operation Details
          7. 7.4.5.2.7  PDR Post-Charge/Post-Discharge Control Loop Operation Details
            1. 7.4.5.2.7.1 PDR Post-Charge/Post-Discharge Setup
          8. 7.4.5.2.8  Detecting Drive and Freewheel MOSFET
          9. 7.4.5.2.9  Automatic Duty Cycle Compensation (DCC)
          10. 7.4.5.2.10 Closed Loop Slew Time Control (STC)
            1. 7.4.5.2.10.1 STC Control Loop Setup
        3. 7.4.5.3 Tripler (Double-Stage) Charge Pump
        4. 7.4.5.4 Wide Common Mode Differential Current Shunt Amplifier
        5. 7.4.5.5 Gate Driver Protection Circuits
          1. 7.4.5.5.1 MOSFET VDS Overcurrent Protection (VDS_OCP)
          2. 7.4.5.5.2 Gate Driver Fault (VGS_GDF)
          3. 7.4.5.5.3 Offline Short-circuit and Open Load Detection (OOL and OSC)
      6. 7.4.6 Sense Output (IPROPI)
      7. 7.4.7 Protection Circuits
        1. 7.4.7.1 Fault Reset (CLR_FLT)
        2. 7.4.7.2 DVDD Logic Supply Power on Reset (DVDD_POR)
        3. 7.4.7.3 PVDD Supply Undervoltage Monitor (PVDD_UV)
        4. 7.4.7.4 PVDD Supply Overvoltage Monitor (PVDD_OV)
        5. 7.4.7.5 VCP Charge Pump Undervoltage Lockout (VCP_UV)
        6. 7.4.7.6 Thermal Clusters
        7. 7.4.7.7 Watchdog Timer
        8. 7.4.7.8 Fault Detection and Response Summary Table
    5. 7.5 Programming
      1. 7.5.1 Serial Peripheral Interface (SPI)
      2. 7.5.2 SPI Format
      3. 7.5.3 Timing Diagrams
  9. DRV8000-Q1 Register Map
    1. 8.1 DRV8000-Q1_STATUS Registers
    2. 8.2 DRV8000-Q1_CNFG Registers
    3. 8.3 DRV8000-Q1_CTRL Registers
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 IDRIVE Calculation Example
        2. 9.2.2.2 tDRIVE Calculation Example
        3. 9.2.2.3 Maximum PWM Switching Frequency
        4. 9.2.2.4 Current Shunt Amplifier Configuration
    3. 9.3 Initialization Setup
    4. 9.4 Power Supply Recommendations
      1. 9.4.1 Bulk Capacitance Sizing
    5. 9.5 Layout
      1. 9.5.1 Layout Guidelines
      2. 9.5.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Receiving Notification of Documentation Updates
    2. 10.2 Support Resources
    3. 10.3 Trademarks
    4. 10.4 Electrostatic Discharge Caution
    5. 10.5 Glossary
  12. 11Pre-Production Revision History
  13. 12Mechanical, Packaging, and Orderable Information
    1. 12.1 Package Option Addendum
    2. 12.2 Tape and Reel Information

Layout Guidelines

Bypass the PVDD pin to the GND pin using a low-ESR ceramic bypass capacitor CPVDD1. Place this capacitor as close to the PVDD pin as possible with a thick trace or ground plane connected to the GND pin. Additionally, bypass the PVDD pin using a bulk capacitor CPVDD2 rated for PVDD. This component can be electrolytic. This capacitance must be at least 10µF. Having the capacitance shared with the bulk capacitance for the external power MOSFETs is acceptable.

Place a low-ESR ceramic capacitor CFLY1 and CFLY2 between the CPL1 / CPH1 and CPL2 / CP2H pins. Additionally, place a low-ESR ceramic capacitor CVCP between the VCP and PVDD pins.

Additional bulk capacitance is required to bypass the high current path on the external power MOSFETs of the H-bridge driver. Place this bulk capacitance such that the length of any high current paths is minimized through the external MOSFETs. Keep the connecting metal traces as wide as possible, with numerous vias connecting PCB layers. These practices minimize inductance and allow the bulk capacitor to deliver high current.

For H-bridge driver external MOSFETs, bypass the drain pin to GND plane using a low-ESR ceramic bypass capacitor with appropriate voltage rating. Place this capacitor as close to the MOSFET drain and source pins as possible, with a thick trace or plane connection to GND plane. Place the series gate resistors as close to the MOSFET gate pins as possible.

For the current shunt amplifier, the placement of the sense resistor is in line with the components of the power stage to minimize trace impedance. If possible, the shunt resistor is also be placed close to the connection to the CSA to decrease the possibility of coupling on other traces on the board.

For high-side current sense, the shunt resistor is near the star point between the supply and the source of the high-side MOSFETs. For low-side current sense, the shunt resistor is between the source of the low-side MOSFET and the star point ground connection of the power stage. The remaining components is placed nearest to the device.

Routing of the sense signals is done using a differential pair. In a differential pair, both signals are tightly coupled in the layout and the traces must run parallel from the shunt or sense resistor to the CSA at the input of the IC.

Bypass the DVDD pin to the DGND pin with CDVDD. Place this capacitor as close to the pin as possible and minimize the path from the capacitor to the DGND pin. If local bypass capacitors are already present on these power supplies in close proximity of the device to minimize noise, these additional components for DVDD are not required.

For the EC driver, place both the CECDRV and CECFB bypass capacitors to GND as close to the respective pins as possible.

Do not connect the SL pin directly to the GND plane. Instead, use dedicated traces to connect these pins to the sources of the low-side external MOSFETs. These recommendations allow for more accurate VDS sensing of the external MOSFETs for overcurrent detection.

Minimize the loop length for the high-side and low-side gate drivers. The high-side loop is from the GHx pin of the device to the high-side power MOSFET gate, then follows the high-side MOSFET source back to the SHx pin. The low-side loop is from the GLx pin of the device to the low-side power MOSFET gate, then follows the low-side MOSFET source back to the SL pin.