SPRACM3E August   2021  – January 2023 TMS320F280021 , TMS320F280021-Q1 , TMS320F280023 , TMS320F280023-Q1 , TMS320F280023C , TMS320F280025 , TMS320F280025-Q1 , TMS320F280025C , TMS320F280025C-Q1 , TMS320F280033 , TMS320F280034 , TMS320F280034-Q1 , TMS320F280036-Q1 , TMS320F280036C-Q1 , TMS320F280037 , TMS320F280037-Q1 , TMS320F280037C , TMS320F280037C-Q1 , TMS320F280038-Q1 , TMS320F280038C-Q1 , TMS320F280039 , TMS320F280039-Q1 , TMS320F280039C , TMS320F280039C-Q1 , TMS320F280040-Q1 , TMS320F280040C-Q1 , TMS320F280041 , TMS320F280041-Q1 , TMS320F280041C , TMS320F280041C-Q1 , TMS320F280045 , TMS320F280048-Q1 , TMS320F280048C-Q1 , TMS320F280049 , TMS320F280049-Q1 , TMS320F280049C , TMS320F280049C-Q1 , TMS320F28384D , TMS320F28384S , TMS320F28386D , TMS320F28386S , TMS320F28388D , TMS320F28388S , TMS320F28P650DH , TMS320F28P650DK , TMS320F28P650SH , TMS320F28P650SK , TMS320F28P659DK-Q1

 

  1.   Using the Fast Serial Interface (FSI) With Multiple Devices in an Application
  2.   Trademarks
  3. 1Introduction to the FSI Module
  4. 2FSI Applications
  5. 3Handshake Mechanism
    1. 3.1 Daisy-Chain Handshake Mechanism
    2. 3.2 Star Handshake Mechanism
  6. 4Sending and Receiving FSI Data Frames
    1. 4.1 FSI Data Frame Configuration APIs
    2. 4.2 Start Transmitting Data Frames
  7. 5Daisy-Chain Topology Tests
    1. 5.1 Two Device FSI Communication
      1. 5.1.1 CPU Control
      2. 5.1.2 DMA Control
      3. 5.1.3 Hardware Control
    2. 5.2 Three Device FSI Communication
      1. 5.2.1 CPU/DMA Control
      2. 5.2.2 Hardware Control
        1. 5.2.2.1 Skew Compensation for Three Device Daisy-Chain System
          1. 5.2.2.1.1 CPU/DMA control
          2. 5.2.2.1.2 Hardware Control
  8. 6Star Topology Tests
  9. 7Event Synchronization Over FSI
    1. 7.1 Introduction
      1. 7.1.1 Requirement of Event Sync for Distributed Systems
      2. 7.1.2 Solution Using FSI Event Sync Mechanism
      3. 7.1.3 Functional Overview of FSI Event Sync Mechanism
    2. 7.2 C2000Ware FSI EPWM Sync Examples
      1. 7.2.1 Location of the C2000Ware Example Project
      2. 7.2.2 Summary of Software Configurations
        1. 7.2.2.1 Lead Device Configuration
        2. 7.2.2.2 Node Device Configuration
      3. 7.2.3 1 Lead and 2 Node F28002x Device Daisy-Chain Tests
        1. 7.2.3.1 Hardware Setup and Configurations
        2. 7.2.3.2 Experimental Results
      4. 7.2.4 1 Lead and 8 Node F28002x Device Daisy-Chain Tests
        1. 7.2.4.1 Hardware Setup and Configurations
        2. 7.2.4.2 Experimental Results
      5. 7.2.5 Theoretical C2000 Uncertainties
    3. 7.3 Additional Tips and Usage of FSI Event Sync
      1. 7.3.1 Running the Example
      2. 7.3.2 Target Configuration File
      3. 7.3.3 Usage of Event Sync for Star Configuration
  10. 8References
  11. 9Revision History

Experimental Results

The EPWM signals are first captured without enabling the EPWM sync capability over FSI, as shown in Figure 7-9. Without the FSI event sync solution enabled, the node device EPWM signals gradually moves out of phase of the lead device’s EPWM signal due to small differences of each device’s oscillator clock.

Figure 7-9 1 Lead - 2 Node Device Without EPWM Synchronization

The EPWM signals after being synchronized have been captured and showcased in Figure 7-10.

The EPWM rising edge jitter at lead device and both node devices are captured after running the example for a week to capture all possible uncertainties and shown in Figure 7-10. Ideally, the jitter measured at the node devices should be as small as possible. It is the noise in the chain present because of inconsistency between the devices, isolation barriers, the communication link, and so forth. CLB also brings in certain delay causing jitter, called as synchronizer delay discussed in Section 7.2.5. Higher number of devices and longer distance between nodes results in worsening of the PWM jitter.

Figure 7-10 1 Lead - 2 Node Device In-Sync EPWM