TIDUE53J March   2018  – February 2025 TMS320F28P550SG , TMS320F28P550SJ , TMS320F28P559SG-Q1 , TMS320F28P559SJ-Q1

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Highlighted Products
      1. 2.2.1  UCC21710
      2. 2.2.2  UCC5350
      3. 2.2.3  TMS320F28379D
      4. 2.2.4  AMC3306M05
      5. 2.2.5  OPA4388
      6. 2.2.6  TMCS1123
      7. 2.2.7  AMC0330R
      8. 2.2.8  AMC0381D
      9. 2.2.9  UCC14341
      10. 2.2.10 UCC33421
    3. 2.3 System Design Theory
      1. 2.3.1 Three-Phase T-Type Inverter
        1. 2.3.1.1 Architecture Overview
        2. 2.3.1.2 LCL Filter Design
        3. 2.3.1.3 Inductor Design
        4. 2.3.1.4 SiC MOSFETs Selection
        5. 2.3.1.5 Loss Estimations
      2. 2.3.2 Voltage Sensing
      3. 2.3.3 Current Sensing
      4. 2.3.4 System Auxiliary Power Supply
      5. 2.3.5 Gate Drivers
        1. 2.3.5.1 1200-V SiC MOSFETs
        2. 2.3.5.2 650-V SiC MOSFETs
        3. 2.3.5.3 Gate Driver Bias Supply
      6. 2.3.6 Control Design
        1. 2.3.6.1 Current Loop Design
        2. 2.3.6.2 PFC DC Bus Voltage Regulation Loop Design
  9. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Required Hardware and Software
      1. 3.1.1 Hardware
        1. 3.1.1.1 Test Hardware Required
        2. 3.1.1.2 Microcontroller Resources Used on the Design (TMS320F28379D)
        3. 3.1.1.3 F28377D, F28379D Control-Card Settings
        4. 3.1.1.4 Microcontroller Resources Used on the Design (TMS320F280039C)
      2. 3.1.2 Software
        1. 3.1.2.1 Getting Started With Firmware
          1. 3.1.2.1.1 Opening the CCS project
          2. 3.1.2.1.2 Digital Power SDK Software Architecture
          3. 3.1.2.1.3 Interrupts and Lab Structure
          4. 3.1.2.1.4 Building, Loading, and Debugging the Firmware
          5. 3.1.2.1.5 CPU Loading
        2. 3.1.2.2 Protection Scheme
        3. 3.1.2.3 PWM Switching Scheme
        4. 3.1.2.4 ADC Loading
    2. 3.2 Testing and Results
      1. 3.2.1 Lab 1
      2. 3.2.2 Testing Inverter Operation
        1. 3.2.2.1 Lab 2
        2. 3.2.2.2 Lab 3
        3. 3.2.2.3 Lab 4
      3. 3.2.3 Testing PFC Operation
        1. 3.2.3.1 Lab 5
        2. 3.2.3.2 Lab 6
        3. 3.2.3.3 Lab 7
      4. 3.2.4 Test Setup for Efficiency
      5. 3.2.5 Test Results
        1. 3.2.5.1 PFC Mode
          1. 3.2.5.1.1 PFC Start-Up – 230 VRMS, 400 VL-L AC Voltage
          2. 3.2.5.1.2 Steady State Results - PFC Mode
          3. 3.2.5.1.3 Efficiency, THD, and Power Factor Results, 60 Hz – PFC Mode
          4. 3.2.5.1.4 Transient Test With Step Load Change
        2. 3.2.5.2 Inverter Mode
  10. 4Design Files
    1. 4.1 Schematics
    2. 4.2 Bill of Materials
    3. 4.3 PCB Layout Recommendations
      1. 4.3.1 Layout Prints
    4. 4.4 Altium Project
    5. 4.5 Gerber Files
    6. 4.6 Assembly Drawings
  11. 5Trademarks
  12. 6About the Authors
  13. 7Revision History

PFC DC Bus Voltage Regulation Loop Design

Before looking at the voltage loop model, the power measurement from DQ domain can be written as:

Equation 28. TIDA-01606

where TIDA-01606

Hence:

Equation 29. TIDA-01606
Equation 30. TIDA-01606

The DC Bus regulation loop is assumed to be providing the power reference, which is divided by the square of the line voltages RMS to provide the conductance. When further multiplied by the line voltage gives the instantaneous current.

TIDA-01606 Voltage Loop Model Figure 2-31 Voltage Loop Model

A small-signal model of the DC bus regulation loop is developed by linearizing Equation 31 around the operating point:

Equation 31. TIDA-01606

Because transformation is an amplitude invariant, translating from RMS to peak quantities using TIDA-01606 and TIDA-01606 , Equation 32 can be derived.

Equation 32. TIDA-01606

Also for resistive load on the DC Bus: TIDA-01606 .

Therefore, the voltage loop plant can be written as Equation 33

Equation 33. TIDA-01606

Using the previous model the following compensator, Equation 34 is designed for the voltage loop:

Equation 34. TIDA-01606

SFRA is used to measure the voltage loop bandwidth, and compare against the model which shows good correlation to the model. Figure 2-32 shows the plant frequency response comparison and Figure 2-33 shows the open-loop frequency response comparison of modeled versus measured.

TIDA-01606 Voltage Loop Plant Frequency
                    Response Measured vs Modeled Figure 2-32 Voltage Loop Plant Frequency Response Measured vs Modeled
TIDA-01606 Voltage Loop, Open-Loop
                    Frequency Response Modeled vs Measured Figure 2-33 Voltage Loop, Open-Loop Frequency Response Modeled vs Measured