SLVSIL5A May   2025  – September 2025 UCC25661-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Input Power Proportional Control
        1. 7.3.1.1 Voltage Feedforward
      2. 7.3.2 VCR Synthesizer
        1. 7.3.2.1 TSET Programming
      3. 7.3.3 Feedback Chain (Control Input)
      4. 7.3.4 Adaptive Dead Time
      5. 7.3.5 Input Voltage Sensing
        1. 7.3.5.1 Brownin and Brownout Thresholds and Options
        2. 7.3.5.2 Output OVP and External OTP
      6. 7.3.6 Resonant Tank Current Sensing
    4. 7.4 Protections
      1. 7.4.1 Zero Current Switching (ZCS) Protection
      2. 7.4.2 Minimum Current Turn-off During Soft Start
      3. 7.4.3 Cycle-by-Cycle Current Limit and Short Circuit Protection
      4. 7.4.4 Overload Protection (OLP)
      5. 7.4.5 VCC OVP Protection
    5. 7.5 Device Functional Modes
      1. 7.5.1 Startup
        1. 7.5.1.1 With HV Startup
        2. 7.5.1.2 Without HV Startup
      2. 7.5.2 Soft Start Ramp
        1. 7.5.2.1 Startup Transition to Regulation
      3. 7.5.3 Light Load Management
        1. 7.5.3.1 Operating Modes (Burst Pattern)
        2. 7.5.3.2 Mode Transition Management
        3. 7.5.3.3 Burst Mode Thresholds Programming
        4. 7.5.3.4 PFC On/Off
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  LLC Power Stage Requirements
        2. 8.2.2.2  LLC Gain Range
        3. 8.2.2.3  Select Ln and Qe
        4. 8.2.2.4  Determine Equivalent Load Resistance
        5. 8.2.2.5  Determine Component Parameters for LLC Resonant Circuit
        6. 8.2.2.6  LLC Primary-Side Currents
        7. 8.2.2.7  LLC Secondary-Side Currents
        8. 8.2.2.8  LLC Transformer
        9. 8.2.2.9  LLC Resonant Inductor
        10. 8.2.2.10 LLC Resonant Capacitor
        11. 8.2.2.11 LLC Primary-Side MOSFETs
        12. 8.2.2.12 Design Considerations for Adaptive Dead-Time
        13. 8.2.2.13 LLC Rectifier Diodes
        14. 8.2.2.14 LLC Output Capacitors
        15. 8.2.2.15 HV Pin Series Resistors
        16. 8.2.2.16 BLK Pin Voltage Divider
        17. 8.2.2.17 ISNS Pin Differentiator
        18. 8.2.2.18 TSET Pin
        19. 8.2.2.19 OVP/OTP Pin
        20. 8.2.2.20 Burst Mode Programming
        21. 8.2.2.21 Application Curves
    3. 8.3 Power Supply Recommendations
      1. 8.3.1 VCCP Pin Capacitor
      2. 8.3.2 Boot Capacitor
      3. 8.3.3 V5P Pin Capacitor
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Mode Transition Management

Using the LL pin, the user configures the power level at which the UCC25661x-Q1 family enters the HF pulse skip and LF Burst mode. The two thresholds that can be set are the HFBurstEntry and LFBursttEntry. Section 7.5.3.3 provides more information regarding the configuration process.

Figure 7-19 describes the entry and exit behavior of UCC25661x-Q1 in burst mode.

  • The HFBurstEntry corresponds to the FBReplica voltage at desired power level where the system enters HF Pulse skip.
  • The LFBurstEntry corresponds to a modified FBReplica voltage at which the system enters LF Burst.
  • When FBreplica is higher than HFBurstEntry, UCC25661x-Q1 family operates in normal switching.
  • When FBreplica is less than HFBurstEntry but greater than LFBurstEntry, UCC25661x-Q1 family operates in HF pulse skip mode. In the HF pulse skip mode, the energy in each packet is still controlled by the control signal FBReplica.
  • When FBreplica is less than LFBurstEntry, UCC25661x-Q1 operates in LF burst mode. In the LF Burst mode, the energy in each packet is fixed at LFBurstEntry threshold.
  • While operating in LF Burst mode, a new LF Burst segment is started when the FBReplica rises above the LFBurstEntry threshold. The segment is terminated when the desired number of packets are delivered and the FBReplica is below the PacketStop threshold.
  • The desired number of packets in a LF Burst segment is computed to regulate the LF Burst operating frequency within 200Hz to 400Hz.
  • In case of a sudden load drop, the LF Burst segment is immediately terminated to avoid output over voltage condition.
UCC25661-Q1 Burst Mode Determination from
                        FBReplica Comparators Figure 7-19 Burst Mode Determination from FBReplica Comparators